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ABSTRACT. This paper introduces a general procedure for modeling the dynam-
ic behavior of multi-rigid body systems having kinematic constraints between
their various elements. This procedure is based on the principle of virtual
work. Two sets of varying parameters are generated for the description of the
kinematics of the system. These two sets are: The dependent and the indepen-
dent coordinates. A set of constraint equations relates the two sets of coordi-
nates. The virtual work principle is derived for the complete system using the
dependent set of coordinates. The coordinate variation are related by the con-
straint equations leading to a reduced system of equations using only the
selected independent degrees of freedom of the system.This procedure simpli-
fies the modeling of large multi-rigid body systems subjected to kinematic
constraints. This simplification in the procedure does not result in an increase
in the number of equations of motion that defines the system’s dynamics. A
detailed numerical example, in which the features of the modeling procedure
are emphasized, is presented. This numerical example introduces a spatial
mixed loop robot with the unique feature of having all the driving motors fixed
to the base of the robot.

1. Introduction

Multi-rigid body dynamics is an old area of research. Numerous publications are avail-
able in this area, which make it difficult to cover all the advances or different directions
of progress. However, the two main approaches for the problem are the analytical
dynamics approach, Kane and Levinsonl!} presented a dynamic formulation based basi- -
cally on the virtual work principle. They applied their formulation to open chains as in
robotic manipulatorsi?l. Kane and Levinson’s method was used by many researchers,
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Wang[?! and Huston!®], where it is applied to systems with kinematic and force con-
straints. The virtual power method which is another form of the virtual work approach
was used by Garcia et al.l’]. The Lagrangian approach is analytical dynamics was used
extensively by many researchers specially in the area of robotic manipulators, Uicker!®l,
Paull’l, Lewis!®), and Agarwal and Chung(®\. Luh, e al.l'% presented an efficient for-
mulation for a recursive computational scheme based on the Newton-Euler approach
for serial manipulators. Although their scheme is applicable for open chain systems it
becomes inefficient for closed or mixed chain systems.

The scheme presented in this paper is based on the virtual work approach, which is
the basis to all the analytical dynamics formulation schemes. It deals with two types of
coordinates: Dependent and independent coordinates. These two sets of coordinates
facilitate the systematic generation of the body’s dynamic matrix and vector using the
dependent coordinates. The body’s dynamic matrix and vector are derived through the
manipulation of the body’s linear and angular displacement variation transformation
matrices. These matrices are similar in concept to the partial linear and angular veloci-
ties of Kane's and Levinson’sl!] formulation. The kinematic constraint equations which
relate the dependent and independent sets of coordinates impose what could be
described as the boundary conditions between the various body dynamic matrices and
vectors. This will lead to the generation of a number of independent equations of
motion equal to the number of independent coordinates. In the Lagrangian approach, if
the chosen generalized coordinates are not independent, the number of equations
describing the motion of the system is increased to accommodate the constraint equa-
tions, Ginsberg!!!l. Therefore, if the number of independent degrees of freedom of the
system is n and the total number of the chosen generalized coordinates is m +n, then the
number of constraint equations is m leading to a total of 2m+n equations of motion.
Although this type of formulation might be required in certain situations, the main
interest usually is in relating the generalized coordinates with the applied forces and
torques. The dynamic modeling procedure developed in this paper limits the number of
equations of motion to the number of independent generalized coordinates of the sys-
tem regardless to the number of kinematic constraint equations.

A numerical example is presented where a three axes spatial robot is dynamically
modeled. The spatial robot introduced in this example has a unique important feature.
The three driving motors in this robot are completely fixed to the base of the robot. The
motion is transmitted using planetary and open gear drives and a pantograph mixed
loop configuration. By having the driving motors fixed at the base, the dynamic loading
on the robot links is reduced resulting in a smooth dynamic behavior specially reducing
the vibrational component of motion, which is not considered in this paper. The dynam-
ic equations of motion derived for this robot are used to implement a position control
strategy. The equations of motion are integrated in order to simulate the dynamic
response of the robot corresponding to be implemented control strategy. The steps of
the modeling procedure are explained using this mixed loop robot shown in Fig. 1. The
following section introduces the mixed loop robot considered in this paper and defines
its configuration and its various elements.
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FiG. 1. A schematic drawing of the mixed loop robot with all parameters shown.

2. The Mixed Loop Robot

The mixed loop robot shown in Fig. 1 is used to explain the steps and to emphasize
the various features of the dynamic modeling procedure presented in this paper. The
robot consists of seven links including the ground link, where each link has its local
coordinate system attached to it as indicated in Fig. 1. The Denavit and Hartenberg
(D-H)!'2 approach of assigning coordinate systems is used. For the robot shown in
Fig. 1, there are six homogeneous transformation matrices relating the different links of
the mixed loop robot. These matrices are defined using the kinematic parameters of the
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robot as indicated in Appendices A and B. The three driving motors are motor,, motor,
and motor,. They are fixed at the based and their motions are transmitted to the links of
the robot through gears and shafts as shown in Fig. 1. The worm gear G, is attached to
motor, and drives worm wheel G, which is attached to link 1 resulting in its rotation
about the axis Z;,. Bevel gear G, is attached to motor, and drives worm wheel Gg
through the gears Gy, G¢ and G,. This planetary gear drive combination results in the
rotation of link 2 about the Z, axis. Similarly, gears G4 through G, provide the drive
train between motor, and link 4 which rotates independently about the Z, axis. Link 4
drives link 6 through link 5 using the pantograph configuration. Gear G5 which is
attached to link 6 drives gear G, resulting in the rotation of link 3 about the Z, axis.
The various constant kinematic parameters and the inertial properties of the links are
given in Appendix B.

3. The Modeling Procedure

This procedure utilizes the D-H homogeneous transformation matrices in defining
the links’ kinematic parameters and in coordinate transformations between links coordi-
nates systems. The modeling procedure consists of six modeling steps leading to the
equations of motion of a multi-rigid body system. The following subsections explain
the modeling steps and apply them to the mixed loop robot.

3.1 Dependent and Independent Coordinates Assignment

The generalized coordinates that define the varying kinematic parameters of the sys-
tem are divided into two types: Dependent and independent coordinates. The constraint
equations define the dependent coordinates in terms of the independent coordinates.
Naturally, the independent coordinates are those associated with the independent drives
or inputs of the system. Consequently, all other coordinates are dependent coordinates.
This feature of the modeling procedure gives flexibility in generalized coordinate
assignment and in defining the actual drives of the dynamic system. For the mixed loop
robot, the variables y;, ¥,, and y;, are the independent coordinates and they correspond
to the angular rotations of the output shafts of motor;, motor,, and motor;, respectively.
The variables g, q,, ... , g are the dependent coordmates and they define the varying
parameters in the homogeneous matrices [A]O,[A]l, .[A] as indicated in Table B-1 of
Appendix B.

3.2 The Constraint Equations

The equations that define the dependent coordinates in terms of the independent
coordinates are called the constraint equations. The expressions of the first order varia-
tions of the dependent coordinates in terms of the first order variations of the indepen-
dent coordinates are required in order to generate the equations of motion. In addition,
the second time derivatives of the dependent coordinates need to be expressed in terms
of the independent coordinates and their first and second order time derivatives. In gen-
eral, the dependent coordinates vector { Q) can be expressed in terms of the indepen-
dent coordinates vector as { ¥} as

(@Y={[F.({¥)} 1) 1)
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The first order variation of the dependent coordinates vector {dQ} is obtained by
expressing the total differential of { F({'¥'}, t} as

{SQ}mxl [ ]nxxn{aw}nxl+5t{aﬁ} (2)
mxl

ot

The elements of the matrix [ C] are the partial derivatives of the vector of the constraint
-functions { F,} with respect to the-independent coordinates and they are given by
oy =2 3)
ij =3
y;
where f; . is the i —th constraint equation and y; is the j—th independent coordinate in the
independent coordinates vector {¥'}. The second time derivative of the dependent
coordinates vector {Q}is expressed as

. 9*F
(Q}‘[C]{‘I’}+[C]{‘1’}+{ 30 } 4)
The elements of [C] are the total time derivatives of Cije The constraint equations for
the mixed loop robot are defined in Appendix B.

3.3 Defining the Position and Orientation Variations

The first order variations of the position of the center of mass of every rigid body
and the variations in the orientation of its coordinate system are defined in terms of the
first order variations of the dependent coordinates. These definitions are obtained
through the differentiation of the expression defining the position of the center of mass
of the rigid body in the intertial coordinates. The position of the center of mass of body
i is given by

(R}, =[TL(PY; (5)
where
[T1, =[A], [A], - AL, (6)

{P;}, and {P;}, are the posmon of the center of mass of the i — th rigid body m the
memal frame and in the body’s local coordinate system, respectively. The matrix [A] is
the j — th homogeneous transformation matrix in the sequence of transformation matri-
ces between the inertial reference frame and the coordinate system associated with the
i — thrigid body and k; is the number of matrices in the sequence. The matrix [T]f, trans-
forms the coordinates of a point given in the i — th rigid body coordinate system into the
inertial coordinate system.

In the mixed loop robot example, consider the rigid body corresponding to link 6.
The sequence of transformation matrices between the inertial frame and the local coor-
dinate system of link 6 is [A](l)[A]“[A]i[A]g = [T]6 The corresponding dependent vari-
ables associated w1th this sequence are > qp> 93 e and q,, (see Appendix B). Note
that, for example, [A]l corresponds to[A]6 in the sequence of transformation matrices
as defined by Equation (6). In addition, note that q3 corresponds to G, which denotes
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the varying coordinate in [A]& .The total number of matrices in the sequence of link 6
is k. = 4. )
6

The variations of the position of the center of mass can be expressed as

. P
SP\‘ al ~ by
A = ; [v]’ Al
5[7;, I:_Eléql ! } p_:, (7)
0 0 I i
where
V1, =14, [Al, .1B]; [A); ..[A], ®)

(dp, op, p. 17 is the variations vector in the position of the center of mass of the i — th
ngld body expressed in the inertial reference frame. The variable q, is the varying
parameter associated with the transformation malrlx [A] and corresponds to one of the
dependent variables in the vector Q. The matrix [B],I is l/he differential operator matrix
and it depends on the type of kinematic pair associated with the transformation matrix
as illustrated in Appendix A. The position variations can be expressed in compact form as

. D, .. D ||éq
op o =| Dy, o Dy : 9)
op. D. .. D. &,,

Sy T Sim

The matrix [D]im, in Equation (9) is called the linear displacement variation transfor-
mation matrix of the i/ — th rigid body. It should be noted here that the position varia-
tions of any point in the rigid body other than its center of mass could be obtained in
the same manner by just changing the position vector { P;}; in Equation (7). Other
points of interest on a rigid body are points of load application as the case in the end
effector of a robot.

The variations in the orientation of the coordinate system of the i — ¢ rigid body
need to be expressed in terms of the dependent coordinates variations. These orienta-
tions variations are expressed in the local coordinate system in order to deal with the
constant local inertial properties of the rigid body. These variations are given by

0 —5¢- 8¢‘\, AT k, -
5¢. 0 b9, | = [[ T]:,] I: 2 8%, [V]i,} (10)
0 =

- 5¢‘\" 5¢,\', i
where 6¢ 6¢~ , and 6¢ are the variations in the orientation of the rigid body i about its
local x, y, and 7 axes, respecuvely [T7, and [V], are the upper 3 3 submatrices of the
respective [T](, and [V], matrices and they correspond to the orientation matrices.
Rearranging Equation (10), the variations of the rigid body orientation can be written in
terms of the dependent coordinates variations as
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6¢".‘ 0\,” " 0'\|m &l
6¢}" = 0-‘V| " 0."1 n s (1 1 )
6¢ 0. 0 &]m

) “il ~em

The matrix [Q],, in Equation (11) is called the angular displacement variation trans-

formation matrix of the i/ — th rigid body.

3.4 Linear and Angular Acceleration

The linear and angular accelerations of the i — ¢tk rigid body are obtained by taking
the second order time derivative of the transformation matrix [T], given by
Equation (6). The resulting expression is broken into two terms, one is associated with
the acceleration vector of the dependent coordinates and the other is associated with
velocity vector product terms. This separation is done in order to allow for the integra-
tion of the equations of motion. The second order time derivative of [T]/ is given by

R kooooa
[T]:): Z%/[Vl,-/}{z qu[V]"':I (12)
Li=! j=1 !
where
[ k’ . -~ A -~ ~ ~ ~
V1, =| X 4[AlL (Bl [A], 8], [A]; ---[A],A} (13)
L /=Lizj

+4; [A), (B LAl --A],

The linear and angular accelerations of rigid body i could be written after simple
manipulations and the use of Equations (8-13) as

{P],‘z[DJ,‘ {Q}+{A,;}f (14)
(@), =[0]; {Q} +(A,}; (15)

The matrices [D]; and [O]; are the same displacement variations transformation matri-
ces presented in Equations (9) and (11). The vectors {Ap}i and (A} are generated
from the second right hand term of Equation (12). They are given by

Py,
A) i J A . v
{{ (’)}}{Zlq,-j[vl,-)} Z (16)
i= g
I i
and
A,
{Al)}[ = Ar)v\‘ . (17)
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where
0 -A,, Aa". o[k
A O A | =[] [zq,»,m.-,]—lm? (1)
~Ay Ay O s

i
The matrix [£2]; is the angular velocity matrix expressed in the local coordinate sys-
tem of the i — th body. It is given by

0 -4, 9,
@i=| 9, 0 -4, (19)
-9, 0, 0|
where
(@) =[0],(0} (20)

3.5 Unconstrained Rigid Body Dynamic Matrix and Vector

The virtual work principle states that the total work done during an infinitesimal dis-
placement of any one of the independent degrees of freedom of the system is equal to
zero. This total work consists of the work done by the applied forces and torques, the
inertial loads, and the force or torque applied in the direction of the degree of freedom
itself. For rigid body i, the virtual work done by the inertial loads and any applied loads
can be expressed in terms of the virtual displacements of the dependent coordinates as

apx'
6Wbi = —[Fx“F;,”FZ“ ]" 6p."i
épz,» ,
6¢x'.
—[MX/: M."liMzn ]i 5¢."i
5¢z', i
&,
+[migx mig_v migz]o 6p,\',- (21)
0
apru
+ z’7'-:-/1 {Fxl:'il F_“Eu Fzm ]0 6p."£:/
aszil 0
6¢Xl-
+ Zlnié”i[MXEu M.inI Minl ]" 6¢Vi




A General Multi-Rigid Bodly... 95

where

(F, K, F, I’ is the inertial force vector at the center of mass of rigid body i
expressed in the inertial coordinate system,

(M, M, M, ],.T is the inertial moment vector of rigid body i expressed in the
local coordinate system.

m, is the mass of rigid body i,

8 8y and g, are the components of the acceleration of gravity in the inertial
coordinate system,

[F, ]Z is the vector of externally applied forces at point / of rigid body

Xeir " Yeu " g,

i and it is expressed in the inertial coordinate system,

(Opy,, Py, 0P, 17 is the linear displacement variations of point / in rigid body i,

M, M, M, ¥ isthe - th externally applied moment vector on rigid body i,
and is expressed in the local coordinate system, and
iy andn; is the number of externally applied forces and moments on rigid

body i, respectively.

The inertial force vector {F; }, =[FxF, .F, ,i]z can be written using Equation (14)
in terms of the velocity and acceleration of the dependent coordinates and the inertial
properties as

(F,}, =m[[D1{0) +(4,},] (22)

The inertial moment vector {M,’},- =M, M, M, ],T can be similarly written using
Equation (15) as

(M, }; =U, {010} + (4, ]+ 121,11, ) () (23)

where [/ ]; is the mass moment of inertia matrix of rigid body i expressed in the local
coordinate system. Substituting Equations (22) and (23) in Equation (21) and using
Equations (9) and (11), the virtual work done by the inertial and applied loads on rigid
body i can be written in terms of the dependent coordinates variations as

Wy, =[(OY 1D Dy +1A D, 18 (24)
where
[DD,)yyxm = - m DY (DY), - 101 1,1 [0); (25)

(AD) == m (AN (D), ~ (AN 11, )10}, - [(211,1:()] [0} +[AE ]y (26)

The one row matrix [AE,],,,, corresponds to the gravity and externally applied forces
and moments of rigid body i and it is derived from the last three right hand terms in
Equation (21).

The matrix [DD)],,,,, and the vector {AD;,} are called the unconstrained rigid body
dynamic matrix and vector. They are computed individually for each rigid body regard-
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less to the constraint equations or the actual independent degrees of freedom of the sys-
tem. With this property, the rigid body dynamic matrix and vector are analogous of the
element stiffness matrix and load factor of the finite element method.

3.6 Equations of Motion

The final set of the equations of motion is obtained by adding up the dynamic matri-
ces and vectors of all the rigid bodies in the system and imposing the constraint equa-
tions. The total virtual work done by the inertial and external loads of M rigid bodies is
given by

M . M

SWRB = Ziawbi =l: {Q}T |:Z[DD mxmj, [ 2 lxm:H aQ}HlXI (27)
i= i=1
d (4)

i=]

Imposing the constraint Equations (1), (2), and (4) on Equation (27) leads to

M
WRB_[{W [C] I:Z[DD]mxm} |:Z[ADI]|)(IN]+
i=]

i=]

[[C]{W}+{ a&tE }} { Z[DD ]mxmjl:|[C]{5lP}nxl
i=]

The total virtual work done by conservative forces and moments for all the virtual
displacements that are consistent with the system’s constraints must be zero. This total
work consists of the work done by the inertial and external loads of the rigid bodies
O6Wpp and the work done by the driving loads. This later work is expressed as

oy,

(28)

5WD = [TITZ '”Tu] : ) (29)

Sy,

where 7, is the driving load (force or torque) associated with the k-t independent
degree of freedom. Combining Equations (28) and (29) and the virtual work principle,
the equations of motion for a multi-rigid body system are written as

[DM)){(¥) + (FE(W,¥)) + {1} = (0} (30)
where [DM (¥)] is the system’s inertia matrix and it is given by
M T
[DM(‘l’)]=[C1T{Z[DD,-I,,,X,,,] (€] &)
i=l

and {FE(Y¥,¥)) is the system’s Coriolis, centrifugal, and externally applied loads vec-
tor and it is given by

2

. M M .. F
[F'E(l]/’q/)}:-[C]T{ Z[ADI]]XIIl]+[C]T[ Z[DDi]mxm] [[C]{W}“.{O;IQ( }:I (32)
i=1 i=1
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A computer program is developed to generate the dynamic equations of motion for a
multi-rigid body system. The input to this program consists of the following:

e The parameters of the homogeneous transformation matrices that describe the
kinematic parameters of the rigid bodies and the connecting kinematic pairs. Each of
these matrices is given an identification number and assigned a coordinate number that
corresponds to the varying parameter of the matrix.

e For each rigid body:

1. The numbers of the transformation matrices sequence that lies in the path
between the rigid body and the internal reference frame.
2. The inertial properties for each rigid body.

¢ A subroutine that contains the constraint equations and their derivatives.

4. The Numerical Example

The equations of motion of the mixed loop robot presented in Section 2 are derived
using the procedure explained in Section 3. The equations of motion are solved in the
forward dynamic mode, where the driving torques of the motors are defined using a
specified control law. The end effector of the mixed loop robot (point E) tracks a spe-
cific path in space with a programmed motion where the displacement, velocity, and
acceleration along the path are given functions of time. Through inverse kinematic
analysis, the desired independent coordinates positions, velocities and accelerations are
determined! 3], These desired values along with the inertial properties of the robot are
used in the control law to determine the driving torques. The following subsections
define the control law used in driving the mixed loop robot and the programmed path
tracking of the end effector.

4.1 The Control Law

The control law used in driving the mixed loop robot is a joint PD (Proportional-
Derivative) control plus partial feed-forward torque. The feed-forward torque part con-
sists only from the driving torque due to the desired independent coordinate accelera-
tions. This control law could be stated as!'*)

(ta) =[K, 1 (¥, =¥} + 1K )Py - )+ DM, (33)
where
{7,} is the control torque vector,
[Kp] is the diagonal position gains matrix,
[K,] is the diagonal velocity gains matrix,
{¥,} is the desired position vector of the independent driven coordinates, and
{¥,} is the actual position vector of the independent driven coordinates.

4.2 Programmed End Effector Path Tracking

The desired path of the end effector is chosen 1o be a straight line in space. The dis-
placement time function along the path is the cycloidal motion program which is given

by
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t 1 2mt
=8 | — - —sinl £&£
s r[ T, 2n sm( T, J] 34)

s is the position along the path at time ¢,
S is the total length of the path, and
T, is the total specified time to track the path.

This motion program has the advantage of having zero velocities and accelerations
at the beginning and end of motion.

The control law and the path tracking parameters for the numerical example along
with the load data are given in Appendix B.

4.3 Results and Discussion

The dynamic equations of motion for the mixed loop robot are solved in the forward
dynamic mode. The driving torques are specified by the control law where the aim is to
force the end effector to track the specified spatial path. The equations of motion are
solved using the fourth order Runge-Kutta method. Figures 2, 3, and 4 compare the
desired and actual values of the position, velocity, and acceleration of the end effector.
Figure 5 shows the time history of the three driving motor torques.
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The performance of the control law as simulated by the modeling procedure gave a
maximum error of 12mm in the end effector position tracking. Depending on the appli-
cation, this error might be acceptable. More accurate tracking could be obtained using
more sophisticated control laws!!?). The purpose in this paper is just to demonstrate the
utility of the proposed dynamic modeling procedure in predicting the dynamic behavior
of multi-rigid body systems subjected to kinematic constraints.

5. Conclusion

This paper presented a dynamic modeling procedure using the virtual work principle.
This procedure is suitable for modeling closed and open loop chains of rigid bodies. It
generates for each rigid body a dynamic matrix and vector analogous to the element
stiffness matrix and loading vector of the finite element method. The kinematic motion
parameters are divided into dependent and independent coordinates in order to allow
for flexibility in specifying the independent degrees of freedom of the system. The con-
straint equations between the two sets of coordinates are analogous to the boundary
conditions in the finite element method. The equations of motion generated at the end
of the dynamic modeling procedure are arranged so that they could be solved in the for-
ward or inverse dynamic mode

The procedure is implemented in a general computer program. A numerical example
is presented where a mixed loop robot is dynamically modeled and the features of the
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modeling procedure are employed. The equations of motion of the mixed loop robot
example are solved in the forward dynamic mode where the driving torques are speci-
fied by the control law.

The dynamic modeling procedure presented in this paper is believed to be a good
core for a general purpose dynamic modeling package. This package should include

¢ A procedure for automatic generation of constraint equations and their derivatives
¢ A modeling procedure for introducing joint and body flexibility.

¢ A facility to include various types of friction loads at the joints.
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Appendix A

The homogeneous transformation matrix of Denavit and Hartenberg (D-H)!2V approach is given by

cos® -sinfcosax sinfsino acosd
/ sinf@ cosOcosax —~cosBsina  asinf Al
Al = ; (A1)
[ ]‘ 0 sinx coso K

0 0 0 1
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The transformation matrix [A]i, transforms the coordinates of a point given in the /-rh coordinates system to
the k—rh coordinate system. The parameters of this transformation matrix are defined in Fig. A-1.

The differential of the transformation matrix [A]’A, could be written in operator form as
d[ A}, = dg[ B], [A], (A-2)

where dy is the differential of the varying parameter in the transformation matrix which depends on the lype
of kinematic pair that exists between the two rigid bodies. The operator matrix [B]‘ is related to the [B],
a manner similar to that between [A]A and[A] as explained in Section 3.3. The matrix [B]‘ is defined as

Link {

e o — —— —

Fi. A-1. The homogeneous transformation matrix parameters.

. for revolute pairs (dy = d6).

o O O C

(A-3)

. for prismatic pairs (dy = ds).
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Appendix B

The kinematic parameters for the six homogeneous transformation matrices of the mixed loop robot are
given in Table B-1.

TaBLE. B-1. The kinematic parameters of the system.

k-1 6 s a [

0-1 q, L,=30cm 0 90°
1-2 4> 0 L,=30cm 0°
2-3 4 0 Ly=30cm | 90°
1-4 q3 0 Ly=15cm 0°
4-5 A 0 Lg=26cm 0°
5-6 q, 0 L,=15cm 0°

The constraint equations for the mixed loop robot are given by

a =y ' A (B-1)
1+L
r |
q, = v, -—V, /rg (B-2)
" "
I+L
r ]
43 = V-l (B-3)
n 4
q4=lr—q2+ﬂ+q} (B-4)
45 =45 ~ 14, - 7,) (B-5)
6 =4y~ B -4, (B-6)
where

r;  are the gear ratios,
B is the constant angle between the two sides of link 2, see Fig. 1, (8 = 57°),

qs, is the initial value of ¢ when the bodies are assembled (‘Is = 46°), and

7, is the initial value of the angle y when the bodies are assembled (7, = 115°).
The gear ratios r; are given by
r =N,/N =38, ry=NyN;=2, ry=Ng/N; =8,
rg=(Ny Ny HINgN ) =2, rs=N,/N); =8 and ro=MNis/Nig=2.

Where N, is the number of teeth for gear G;.
The inertial parameters for the six rigid bodies of the robot are given in Table B-2.
TaBLE B-2. The inertial parameters of the system.

Center of mass (cm) | Mass moment of inertia (kgmz)

Body Mass

number | (kg) X y z I 1. 1.
I 2.0 00 -150 00 0.044 0.008 0.044
2 31 |-125 - 43 00 0.003 0.013 0.016
3 022 |-188 0.0 00 0.004 0.02 0.02
4 0.15 [-100 00 00 0.01 0.015 0.02
5 006 |-130 00 00 0.0 0.004 0.004
6 015 }-50 00 00 0.01 0.015 0.02
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The diagonal elements used in the numerical example for the feedback gain matrices of the control law
are:

K,y =100, K,y =250, K,33=25.0N.m,
K, =10, K 5, =05, and K,;3=0.5 N.ms.

The inertial coordinates of the initial and terminal points of the spacial line tracked by the end effector of
the robot are P; = (0.3, 0:0, 0.8) m and P, = (~0.3, 0.4, 0.3) m, respectively. The path was tracked within 1.0
second using 0.001 second integration time step. The end effector was carrying a mass of 5 kg at its tip.
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