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ABSTRACT. The determination of flutter speed of aircraft is of a prime im
portance. This is done to ensure that the aircraft is flutter free within its
flight envelope. The present method for the determination of flutter speed
uses the finite element technique to calculate the mass and stiffness distribu
tion of the whole structure of the aircraft and hence to compute the natural
frequencies and the mode shapes of the complete structure. After adding
the aerodynamic forces Theodorsen method is used to solve the flutter sta
bility determinant, and1the flutter speed is determined by the point of inter
section of the real and imaginary root loci. The present method is used to
determine the flutter speed of a commuter airliner and the results are given.

1. Introduction

The occurance of wing flutter within the flight envelope of an aircraft can hardly be
other than catastrophy. It is, therefore, essential to ensure that the aircraft wing is
""flutter free'~ before the aircraft can fly. Flutter investigations began as early as
1936[11, when the only available calculating lnachines were of the hand operated type.
Due to this limitations the elastic structure of the aircraft was, in the solution, re
placed by a semirigid structure having only two degrees of freedom. Routh's criter
ion was employed to examine the stability of the aircraft. An inverse method was
later proposed lll , where an external force was added to the system and the values of
flutter speed and flutter frequency were those which would vanish the added external
loads. Although this method was limited due to the absence of advanced computers
at that time it was recently brought back[21 to be used on small computers with 32K
RAM.

The widespread of microcomputers with at least 640K RAM has made life easier
and it would be more appropriate to u~e'amore rigorous approach to solve an impor-
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tant problem s4£h as wing flutter.

At present, the method commonly used is that of repeated direct solution of the
eigenvalue problem where the ajrcraft speed is varied in steps until a flutter boundry
is crossed(3-5]. This method is sometimes criticized because it treats the problem from
mathematical view point, where physical insightl is lost. However, Baldock[6] pre
sented a method to enable the results to be understood in terms of the constituent
systems.

On the other hand the accuracy of the method is restricted by the accuracy of the
physical data used. This is why in this paper the finite element technique is used as a
tool for the solution of the problem. The present work is based on a previous paper
by Nahas[71.

2. Finite Element Models

An example representation for a commuter high wing aircraft is shown in Fig. 1

y

FIG. 1. Finite elements representing the aircraft.

where beam elements were used. To reduce the core required in the computer two
different finite element models were used. The first was for the aircraft in the sym
metric motion, Fig. 2, and the other was for the antisymmetric motion of the aircraft,
Fig. 3. More elements were used to represent the wing than used to represent the
other parts of the aircraft because wing flutter is the most critical case of flutter.
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FIG. 2. Finite element model for the symmetric motion.

Six degrees of freedom (that is three rotations and three translations) at each node
can be used, but, again, to reduce the memory required in the computer only the im
portant freedoms were used in the models as shown in Fig. 2 and 3. Mazetl8\ states
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FIG. 3. Finite element model for theantisymmetric motion.
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that the freedoms of roll, pitch and heave are the most important freedoms in the
wing and the tailplane. For the fuselage and the fin in wing flutter problem the pitch
and heave are important in the symmetric case, while the roll is the only important
freedom in the aritisymmetric case. However, to account for the difference in level
between the datum of the different parts of the aircraft all the nodes were given an
extra degree of freedom. This was the surge freedom in the symmetric model and the
sway freedom in the antisymmetric model. This would imply that all nodes which
have the same z-coordinate would have the same freedom number. The powerplant
and the landing gears were idealized as lumped masses concentrated in their places.
Similarly, non structural loads such as payload, fuel and furnishings were also
idealized as masses but distributed in the appropriate locations.

To reduce rounding errors during the solution reutine the sequence of the freedom
numbering adopted was the node by node numbering fashion, taking into account,
however, the restraints between the wing and fuselage by assigning the same free
dom number where appropriate.

3. Mass and Stiffness Matrices

The overall mass and stiffness matrices for the whole structure were derived as
usual from the individual element mass and stiffness matrices after transformation
fronl element axes to global axes. The element mass and stiffness matrices require
the determination of the mass of the element and its cross-sectional properties in
cluding the positions of the centre of mass and the flexural centre. A computerized
procedure was employed to obtain all this information at many stations along each
part of the aricraft. Real structural data were input to obtain exact properties. The
data needed by the program included the stringer positions and areas, skin thicknes
ses, spar positions and thicknesses (for the wing and similar structures) and floor pos
itjon and thicness (for the fuselage).

4. Natural Frequencies and Mode Shapes

The natural frequencies and the mode shapes were derived by organizing an eigen
value problem from the mass matrix [M] and the stiffness matrix [S] by first writing
Lagrange's equation

[M] . {U} + [S] . {U} = 0 (1)

\vhere {U} is the vector of generalized coordinates, i. e., the node freedoms of the
problem.

When a harmonic solution is substituted in equation (1) the following eigenvalue
equation is obtained

[S] {U} = 0 2 [M] {U} (2)

The eigenvalues 0 and the eigenvectors {0} of equation (2) are respectively the
required natural frequencies and mode shapes of the complete structure of the air
craft.
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The diagonal mass and diagonal stiffl1;ess matrices are then obtained from the equ
ations

diag [M] = {0} T , [M] . {0}

diag [S] = {0}T. [S] · {0}

(3)

(4)

5. Aerodynamic Forces

The aerodynamic forces are taken from Fungl4) and rearranged here in matrix
forms to be consistent with the present method of solution. These forces are given for
the two cases as follows l

5.1 The Symmetric Case

[ L] [ A11 A12] [h]
P A 2l A 22 a

where the coefficients A's are as follows

(5)

A 11 =-17"pV2 [-k2 +2C(k)ik] (6)

A l2 = - 17" P V2 b (ak2 + ik) + 2C (k) [1 + ik (V2 - a) ] (7)

A 2l = 17" P V2 b [2C (k) ik (V2 + a) - k2a] (8)

A 22 = 17" P V2b2[2(V2 + a) C(k) {I +ik(V2 - a)} + k2/ 8 + k2a + (a - V2) ik] (9)

(10)

C(k)

a
b
a
V

P
k

is the lift force,
is the pitching moment,
is the vertical deflection,
is the pitch deflection,
is the semi-chord~

is the distance from mid-chord to elastic axis,
is the airspeed,
is the air density,
is the reduced frequency, k = bOIV,
is the symbol of imaginary number,
is Theodorsen's function which is given by

H (2) (k)
C (k) = 1

H
I
(2)(k) + iHo(2)(k)

where H n(2) (k) is Hankel's function of second kind and order n. Hankel's functions
are given by Spiege]l91,

where
L
p
h

Hn(2) (k) = In (k) - i Yn(k) (11)

where,
In is Bessel's function of first kind and order nand,
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Yn is Bessel's function of second kind and order n.

In terms of the generalized coordinates the aerodynamic forces are written as fol
lows

{Q} = [F] . {U} (12)

where {Q} is the vector of the aerodynamic forces and

Fij = of
s

(AUhjhj + A 12 hi Cij + A 2]hj Ci i + A 22 Cii Cij )dx (13)

where s is the semispan.

5.2 The Antisymmetric Case

The aerodynamic forces in this case include the aileron moment and can be written
as follows

(14)

where,
R is the rolling moment and,
f3 is the aileron deflection.

The equations of the coefficients A's are omitted here for brevity. The forces can
also be written in terms of the generalized coordinates in a similar manner to the sym
metric case, i.e., as in equation (12) except that equation (13) becomes here as fol
lows

Fij = of
s

(A 11 hi hj + A 12 hi Cij + A 13 hjf3j + A 21 Ci j hj + A 22 Ci j Cij

+ A 23 (XjJ3j + A 31 J3 i hj + A 32 J3j (Xj + A 33J3jJ3j ) dx (15)

6. Flutter Equation and Flutter Determinant

The flutter equation in matrix form is[7]

[M] . {U} + [S] . {U} = {Q} (16)

Substituting a solution for a simple harmonic motion in this equation the following
equation is obtained

[ - n2 M + S - F] {U} = 0 (17)

For non-trivial solution the determinant of equation (17) must vanish, giving

1- n2 M + S-FI = 0 (18)

This is the flutter determinant. However, with the presence of structural damping of
coefficient g it becomes

(19)
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7. Results

The present analysis Was used to find the flutter speed of the commuter aircraft of
Fig. 1. The structural details of the wing for this aircraft are given in Fig. 4 and Table
1. The flutter stability determinant of equation (18) was solved bYilssigning a value to
the airspeed V and then finding the values of the real and imaginary parts of the de
terminant for a range of the frequencies. When ths sign of the real or imaginary part
of the'determinant is changed there must be a zero for that part, which was deter-

TABLE 1. Wing structural data.

Upper Surface Lower Surface Spa rs Leading
Bay skin stringer skin stringer thickness thickness area of Edge

thickness area thickness area affront of rear spar cap thickness
(mm) (mm!) (mm) (mm!) spar(mm) spar (mm) (mm!) (mm)

1-2 2.64 130 2.95 168 1.63 1.83 250 1.0
2-3 2.64 130 2.95 168 1.63 1.83 250 1.0
3-4 2.64 130 2.95 168 1.63 1.83 250 1.0
4-5 2.64 130 2.95 168 1.63 1.83 250 1.0
5-6 2.64 130 2.95 168 1.63 1.83 250 1.0
6-7 2.34 104 2.34. 104 1.63 1.83 250 1.0
7-8 2.34 104 2.34 104 1.63 1.83 250 1.0
8-9 2.34 104 2.34 104 1.63 1.83 250 1.0
9-10 1.63 93 1.63 93 1.63 1.83 130 0.7

10-11 1.63 93 1.63 93 1.63 1.83 130 0.7
11-12 1.63 93 1.63 93 1.63 1.83 130 0.7
12-13 1.63 93 1.63 93 1.22 1.22 105 0.7
13-14 1.22 93 1.22 - 93 1.22 1.22 105 0.7
14-15 1.22 93 1.22 93 1.22 1.22 105 0.7
15-16 1.22 66 1.22 66 1.22 1.22 105 0.7
16-17 1.22 66 1.22 66 1.22 1.22 105 0.7
17-18 1.22 66 1.22 66 1.22 1.22 105 0.7
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FIG. 4. Wing structural details of the aircraft.

mined by interpolation. The airspeed was then increased and the routine was re
peated to find other roots for the real and imaginary parts of the determinant. The
roots were then plotted against the airspeed. Any point of intersection of the real and
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imaginary root loci represents a root for the determinant, i. e., it is a flutter point. The
results obtained from the computer program are shown in Fig. 5 for the symmetric
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FIG. 5. Solution of the flutter determinant in the symmetric motion.

motion. The flutter points are denoted by (F) in the figure. The number of the flutter
points equals the number of the degrees of freedom of the problem. The lowest flut
ter speed is taken as the flutter speed for the aircraft. Figure 6 shows the solution of
the flutter determinant for the aircraft in the antisymmetric motion. The flutter

70r-----------------------------,

---------

(F)

60

~ 50 !==-.=.=--:.::--.=.:--:=.--=-=--=--=-=--=--=-~- -r===r7=-=--:=-=-_=_=__:=-__=_7:__:-=.~__::-::-~.~-.=-=--=--==--
.!!!
"t:l
o
~ 40

-------_.-- -----------

>u
Z
w
5 30
w
a:l1.. -- -----------

--------
20

10 -- Real Root Loci
-- - - - Imaginary Root Loci

o0.L---1OO~--:200~--300.,.....,.--4-00L:---500......,..--600...L---700--I---800'----9.LOO----Jl00
AIRSPEED (m Is)

FIG. 6. Solution of the flutter determinant in the antisymmetric motion.
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speed as read from Fig. 5 is 800 mIs, whereas it is 300 mls in the antisymmetric case as
read from Fig. 6. The diving speed for this particular aircraft is 154.5 mls (or 300
knots). This ensures that the aircraft is flutter free.

8. Conclusion

The idea of employing finite element technique to solve the complicated problem
of wing flutter has been proven to be possible and applicable. The present method
takes the responsibility of doing all the calculations required to obtain the flutter
speed of the aircraft without introducing any simplification to the structure. As many
degrees of freedom as desired can be used provided the memory of the concerned
computer is of enough size.
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