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Design of Rectangular Beams under Torsion, Bending and Shear

ALIA.AKHTARUZZAMAN

Civil Engineering Department, Faculty of Engineering,
King Abdulaziz University, Jeddah, S~udi Arabia.

ABSTRACf. A set of interactive strength equations based on the skew-bend
ing model have been modified for designing rectangular beams subjected to
torsion, bending and shear. The design procedure is a trial and error ap
proach, and is based on the estimation of the required pure flexural moment
capacity of the section to be designed. Torsion-bending-shear interaction
data of a reference section have been used in estimating the pure flexural
moment capacity. These data are presented in a tabular form and also as
non-dimensional interaction diagrams. Four numerical examples covering
different possible modes of failure are presented. The torsional moment
capacities of the designed sections are compared with those given by the
ACI code torsion equations.

Introduction
"Reinforced concrete beams under uneven floor loading as in the case of an edge

beam in a building, are subjected to torsional moments. The fact that this affects the
structural performance of members was long recognized by designers as well as by
the ACI codell ]. Lack of adequate research, however, hindered the formulation of
any suitable code provisions for the design of reinforced concrete members subjected
to torsion. Subsequently, the ACI code[2] included design provisions, on the basis of
Hsu's(3] work, for members subjected to torsion and torsion with shear. These, how
ever, neglect the influence of bending moment on the torsional strength of beams, al
though the interdependence of torsional moment and bending moment capacities of
reinforced concrete members was long indicated by different researchersl4-6]. This in
terdependence becomes more pronounced at low ranges of T/M ratios.

Since the late sixties, researchers have been investigating the torsion-bending in
teraction[7-11] as well as the torsion-bending-shear interaction[12-l4}. Their works are
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based either on the skew-bending model developed by Lessig[5] or on the space struss
analogy propounded by Rauschl151. Most of these works, however, concentrate on
the analytical rather than the design aspect of the torsion problem.

Recently, Hasnat and Akhtaruzzaman[16] presented theoretical equations based
on the skew-bending model for the entire range of torsion-bending-shear interaction
for rectangular beams of solid cross-section as well as for beams containing a small
opening. The equations are suitable for analyzing a given section and can be used to
obtain its theoretical torsional moment capacity Tn' under any combination of tor
sion, bending and shear. In their present format, howeyer, the equations are not suit
able for application to design problems. In this paper, the basic strength equations
are presented in a different form rendering them applicable to the design of rectan
gular beams under any loading combination.

Basic Equations

The skew-bending model categorizes torsional failure of a reinforced concrete
beam under three different modes: Mode 1, Mode 2 and Mode 3 depending on the
location of a skewed compression zone near the top, side or bottom of the section, re
spectively. The failure pattern depends on the aspect ratio of the beam, the ratio be
tween top and bottom longitudinal reinforcements, and the ratio between applied
torsional moment and bending moment in combination with different values of shear
force.

According to Hasnat and Akhtaruzzamanl16], T] , T2 and T3 , the torsional moment
capacities in Modes 1, 2 and 3, respectively, of a rectangular beam of solid section are
given by

where
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The smallest of the three torsional moment capacities, T1, T2 and T3, is taken as
the theoretical torsional moment capacity Tn' of the section.

In the above expressions A w is the area of one leg of vertical stirrups,!wy is the yield
strength of stirrup steel, MOl' Moo and M03 represent the bending moment capacities
of the section in positive, lateral and negative bending, respectively, s is the stirrup
spacing, Xl and Yt are the center-to-center dimensions of a long stirrup, a is the aspect
ratio of the beam section, ~ is a factor incorporating torsional moment and shear
force acting at the section, L1 and L1' are factors incorporating torsional moment,
bending moment and shear force acting at the section and its cross sectional dimen
sions, and tfi is the ratio Qetween torsional moment and bending moment acting at the
section.

Transformation of the Basic Equations

Equations 1, 2 and 3 indicate that the values of TI , T2 and T3 can be readily ob
tained once the various sectional and loading parameters are known.

In a design problem, however, where the sectional parameters are to be estab
lished, the equations cannot be readily used. Therefore, Eqs. 1,2 and 3 are to be ex
pressed in different forms to render them suitable for design applications. The re
quired transformations of the basic equations are presented below.

Transformation ofEq. 1

By transposing and squaring both sides, Eq. 1 is written as

[ Tl L1 1]2 1 1
2Mo1 K1 + t/u1 = K

1
+ (t/u1 )2

Expanding the terms within the parentheses and cancelling 1/( tfiL1 )2 from both sides,
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(13)

Substituting for T1 from Eq. 1,

Equation 12 is the transformed form of Eq. 1.

Transformation ofEq. 2

By transposing and squaring both sides, Eq. 2 is written as

(14)

or

where

T; (1 + 8)2
= R 2 K2 (15)

4M~J

K 2

T~ ( 1 + 8)2
(16)
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k~ C1 + 8)2
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4R2

k =
T2

(18)2
MOl

Substituting for T2 from Eq. 2,

k =_2_~K2 1 + 8 2 2 (19)

Replacing T2 by Tn ( =Tu/cP ) for Mode 2 failure, where Tuand cP are the factored tor
sional moment and the undercapacity factor, respectively, Eq. 18 becomes

where
Tn ( = T2 )

t/J = ---Mn

Equation 17 is the transformed form of Eq. 2.

(20)

(21)
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Tran~formatioD ofEq. 3

By transposing and squaring both sides, Eq. 3 is written as

[
T3~' 1]2 R3 1

2Mo1 K1 - "'11 ' = K 1 + ("'11')2
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(22)

Expanding the terms within the parentheses and cancelling 1/( t/J~' )2 from both
sides,

or

where
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Substituting for T3 from Eq. 3,

(27)

Equation 25 is the transformed form of Eq. 3 and is similar to that of Eq 1.

Equations 12,17 and 25 are used for simultaneous a,pplication of torsion, bending
and shear, can be readily used for torsion and bending only by putting ~ = 1, 8 = 0
and ~' = -1. These substitutions reduce Eqs. 12, 17 and 25 to

k2

K = ~ . J_ (28)
1 4 t/J - k 1

k2

K = 2 (29)
2 4R2

K =
k; t/J

(30)
1 4( R3 t/J + k3 )

Design Procedures

The design for torsion basically means determining the size and spacing of stirrups
required to develop a desired torsional moment capacity Tn ( = Tu/<t> ) in a section
when it is subjected to a factored bending moment M u and a factored shear force V

ll
•
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The section can be designed first for flexure to have a pure bending moment capacity
MOl and then the required stirrup size and spacing can he determined to give
adequate shear and torsional strengths. The pure bending moment capacity MOl'

however, is not known initially and as shown in Fig. 1(a), depending on l/J and A, the
ratio between bending moment and shear force acting on the section, the factored
moment Mu ( = cf>Mn ) is only a variable fraction of MOl. The pure flexural moment
capacity MOl' nevertheless, can be obtained by using Eq. 13, 18 or 26 written as

MOl =
TI

kl
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T2
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(a) Effect of \V and A on Mn at

constant Tn

(31)

(32)
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(b) Torsion - Bending - Shear interaction

surface

FIG. 1. Typical torsion-bending interaction diagrams and torsion-bending-shear interaction surface.

If k l , k2 and k3 are known, the pure flexural moment capacity MOl can be obtained
by using the least of these with T}, T2 or T3 replaced by Tn in the corresponding equ
ation. However, the values of k l , k2 and k3 themselves depend, among other things,
on the section parameters, and so cannot be known initially. This problem can be
overcome by a trial and error approach using a reference section of known dimen
sions and preferably having other variables identical to the section to be designed.
The k}, k2 and k3 values of the reference section can be used to obtain an estimated
pure flexural moment capacity M~}.

A set of values of k l and k2 of a typical 250 x 500mm reference section are pre
sented in Table 1. The section has 10mm diameter stirrups at lOOmm spacing with
two 12mm diameter hangers, and concrete strength f~ of 27.6 MPa, fwy and f y' the
yield strengths of stirrup and longitudinal steel, of 276 MPa.
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Table 1 contains values of k1 and k2 for three different steel ratios, and a range of
T/M ratio ( '" ) and M/V ratio ( ,\ ). For other values of these parameters, k1 and k2
can be interpolated. The table does not contain any values of k3• The possibility of
Mode 3 failure is checked separately as will be shown later. Although Table 1 is for
particular values of material strengths and sectional properties, it can beused in any
initial trial calculation, for other values of these also. The subsequent calculations
are self-adjusting in nature.

TABLE 1. Values of kl and "-z of a 250 x 500mm reference section.

p = p_ = 0.0370' p = 0.50 p_ = 0.0181 p = 0.25 P_ = 0.lXW25

Ralio - -

TIM aU; aU= aU= aU= alA :: aU: aU= atA.: atA= aU. = all = alA= aLl = aU: alA= aU: alA. = aU= alA. = al'\% aU.=:

O.05m O.lOm O.20m O.60m I.oom 1,50m . O.05m O.lOm O.20m O.60m I.oom l.50m x O.05m O.lOm 0.lOm O.60m ~.oom 1.50m .
0.02 0.0012 0.0024 0.0047 0.01J2 0.0166 0.0179 0.0198 0.0016 00031 0.0062 0.0159 0.0178 0.0187 0.0199 0.0022 0.0044 0.lQl7 0.0174 0.0187 0.0193 0.0199
0.04 0.0024 0.0047 0.0091 0.0243 O.OJIJ 0.0338 0.0384 0.0031 0.0062 0.0119 0.0J04 0.0341 0.0360 0.OJ91 0.0044 0.lQl7 0.0169 0.0JJ7 0.0J64 O.03TI 0.0395
O.~ 0.0035 0.0069 0.01J2 0.0338 0.0441 0.0476 0.0551 0.0047 0.0091 0.0174 0.0435 0.0489 0.0517 0.0l70 0.0066 0.0129 0.0247 0.0489 0.0530 0.0550 0.0583

O.lll 00049 0.0091 0.0171 0.0419 O.OllJ 0.0597 O.~ 0.0062 0.0119 0.0225
O.OllJ

0.~22 0.~59 0.0734 0.lQl7 0.0169 0.0320 O.~ O.~ 0.071J 0.0762
0.0551

0.10 00058 00122 0.02<ll 0.0490 0~50 0.0701 0.lll19 0.0076 0.0147 0.0274 O.~ 0.0741 0.0786 0.001 0.01<ll 0.0209 0.0389 0.0761 0.<ll28 0.<ll6J 0.0929

0.12 0.0069 0.01J2 0.0243 0.0552=0.0792 0.0924 0.0091 0.0174 0.0320 0.0726 0.<ll49 0.0900 0.1011 0.0129 0.0247 0.0454 O.llI82 0.0961 0.1003 0.100

0.14 O.lllIO 0.0152 0.0276 O~ 0.0798 0.<ll71 0.101J 0.0105 0.0200 0.0:J6J 0.0798 00946 0.1002 0.1127 0.0149 0.02S4 0.0516 0.0995 0.1<ll4 0.1130 0.1228
0.16 0.0091. 0.0171 0.0J<ll O.~ 0.<ll47 0.0941 O.1<ll1l 0.0119 0.0225 00405 0.<ll6J 0.1033 O.UllJ 0.1229 0.0169 0.0320 0.0575 0.1099 0.1197 0.1249 0.B58
0.18 0.0101 0.0190 0.0338 0.0700 0.<ll91 0.1003 0.1154 o.om 0.0250 0.0444 0.0921 0.1I1J 0.1176 0.1JI9 0.0189 o.om O.~ 0.1197 0.1301 O.IJ58 0.1479

0.20 0.0112 0.02<ll 0.0J66 0.07J9 0.0929~ 0.1210 0.0147 0.0274 0.0481 0.097J 0.1181 0.1250 0.:399 0.0209 0.0389 O.IW 0.1287 0.1398 0.1458 0.1588
0.1~

0.22 0.0122 0.0226 0.0393 o.om 0.0963 0.1094 0.1259 0.0161 b.0297 0.0517 0.1020 0.1250 0.1JI7 0.1470 0.0228 0.0422 0.0734 0.1171 0.1487 0.1550 0.1688

0.24 0.01J2 0.0243 0.0419 0.1mI 0.0993 0.1121 0.1302 0.0114 0.0320 0.0551 0.100~ 0.ll78 0.1533 0.0247 0.0454 0.0782 0.1449 0.1569 0.16l6 0.17*)
0.1~

0.26 0.0142 0.0260 0.0443 0.<llJ8 0.1019 0.1143 0.1340 0.0187 0.0342 0.0l8l 0.1103 0.1341 0.14lJ 0.1590 0.0266 0.0485 0<ll28 0.1522 0.1646 0.1714 0.1864
0.28 0.0152 0.0276 0.0467 O.llI66 0.1044 0.1163 0.1l14 0.0200 0.00 0.~14 0.1139 0.ll73 0.1484 0.1641 0.02S4 0.0516 0.002 0.1590 0.1117 0.1787 0.1940
0.30 0.0162 0.0292 0.0490 0.<ll91 O.I~ 0.1181 0.1404 0.021J 0.0384 o.~ o.lIn 0.1402 0.1530 0.1687 0.0302 0.0546 0.0914 0.1655 0.1784 0.1814 0.2011

0.32 0.0171 0.0J<ll 0.0511 0.0914 0.1<ll6 0.1198 0.1431 0.0225 0.0405 0.~73 0.12QJ 0.1428~ 0.Jn9 0.0320 0.0575 0.0954~ 0.1846 0.1917 0.2076
0.1476 0.1707

0.34 0.0181 O.OJD 0.0532 0.0936 0.1104 0.1212 0.1456 0.02J8 0.0425 O.~ 0.1231 0.1452 0.1595 0.1767 00337 0.~3 0.0993 0.1147 0.1903 0.1976 0.2B5
0.36 0.0190 0.0338 0.0552 0.0956 0.1121 0.1226 0.1478 0.0250 0.0444 0.0726 0.1258 0.1474 0.1613 0.11ll2 0.0355 0.~3O 0.1030 0.1186 0.19.57 0.2030 0.2191
0.38 0.0199 0.0352 0.0571 0.0975 0.1136 0.1238 0.1498 0.0262 0.0463 0.0751 0.1283 0.1494 0.1629 0.1834 o.om 0.0657 O.I~ 0.1821 0.2OOl 0.2<ll1 0.2242

0.040 0.02<ll 0.0J66 0.0589 0.0993 0.1150 0.1249~ 0.0274 0.0481 0.0775 0.1J<ll O.lllJ 0.1644 0.1864 0.0389 O.IW 0.1100 0.1814 0.2056 0.2129 0.2290
0.1509

0.42 0.0217 O.O~ O~ 0.1009 0.1163 0.1259 0.1509 0.0286 0.0499 0.0798 0.1327 0.1530 0.1657 0.1891 0.0405 0.0709 0.1ll3 0.1884 0.2101 0.2174 O.D34
0.44 0.0226 0.0393 0.0624 0.1024 0.1176 0.1269 0.1509 0.0297 0.0511 O.<ll2O 0.1348 0.1546 0.1670 0.1916 0.0422 0.07J4 0.1165 0.1913 0.2143 0.2216 0.2375
0.46 0.02J4 O.~ O.~ 0.1039 0.1187 0.1278 0.1509 0.0309 0.0534 0.<ll42 0.1369 0.1562 0.1681 0.1940 0.0438 0.0758 0.1195 0.1940 0.2183 0.2255 0.241J
0.48 0.0243 0.0419 O.~ 0.1053 0.1198 0.1287 0.1509 0.0320 0.0551 0.<ll63 0.1385 0.1576 0.1692 0.1961 0.0454 0.0782 0.1224 0.1966 0.2220 0.2292 0.2450

0.50 0.0252 0.0431 0.~71 O.I~ 0.12<ll 0.1294 0.1509 0.0331 0.0567 0.<llIl3 0.1402 0.1589 0.1702~ 0.0470 O.~ 0.1253 0.1990~ 0.2327 0.2484
0.1986 0.225

0.60 0.0292 0.0489 0.0739 0.1121 0.1249 0.1325 0.1509 0.0384 O.~ 0.0973 0.1474 0.1644 0.1744 0.1986 0.0546 0.0914 0.1381 0.2092 0.2JJ3~ 0.2626
0.2475

0.70 0.0330 0.0542 0.0798 0.1163 0.1281 0.1349 0.1509 0.0434 0.0713 0.1049 0.1530 0.1685 0.In5 0.1986 0.~11 0.1012 0.1489 0.2172 O.D92 0.2519 0.2734

0.&1 0.0366 0.0589 0.<ll47 0.1198 O.I~ 0.1367 0.1509 0.0481 0.0775 0.1115 0.1576 0.1718 0.1799 0.1986 O.IW 0.1100 0.1583 0.2237 0.2438 0.2553~0.2819
0.90 0.0399 0.~32 0.0891 0.1226 0.1325 0.1382 0.1509 0.0526 0.0831 0.1172 0.161J 0.1144 0.1818 0.1986 0.0746 0.11&1 0.1664 0.2289 0.2475 0.25&1 0.2819
1.00 0.0431 0.~71 0.0929 0.1249 0.1342 0.1393 0.1509 0.0567 0.<ll8:J 0.1222 0.1644 0.1765 0.1833 0.1986 0.~5 0.1253 0.17J5 0.2333 O.~ 0.2602 0.2819
1.50 0.0l66 0.003 0.1~ O.IJ25 0.1l93 0.1430 0.1509 0.0745 0.llll3 0.1402 0.1744 0.1833 0.1881 01986 0.1057 0.1538 0.1990 0.2475 0.2602 0.2671 0.2819
2.00 0.~1l 0.0929 0.1150 0.1367 0.1421 0.1449 0.1509 0.<ll83 0.1222 O.lllJ 01799 01869 0.1906 01986 0.1253 0.17J5 0.2148 0.2553 0.2653 0.27~ 0.2819
2.50 0.0755 0.1006 0.12<ll 0.119J 0.1438 0.1461 0.1509 0.0993 0.1324 0.1589 O.l8:JJ 0.1891 0.1922 0.1986 0.1409 0.1879 0.2255 0.2602 02685 02728 0.2819
100 0.<ll2J 0.1~ 0.1249 0.1412 0.1449 0.1469 0.1509 0.1083 0.1402 0.1644 0.1817 0.1906 0.1932 0.1986 0.1538 0.1990 ODJJ 02636 0.27~ 0.2743 0.2819
4.00 0.0929 0.1150 0.1J<ll 0.1435 0.1464 0.1479 0.1509 0.1222 O.lllJ 0.1118 0.11l1l8 0.1926 0.1945 0.1986 0.17J5 0.2148 0.2438 0.2679 0.2734 0.2761 0.2819
5.00 0.1006 0.12<ll 0.1342 0.1449 0.1473 0.1485 0.1509 0.1324 0.1589 0.1165 0.1906 0.1937 0.1953 0.1986 0.1879 0.2255 O.~ 027~ 0.2750 02773 0.2819
6.00 O.I~ 0.1249 0.1367 0.1459 0.1479 0.1489 0.1509 0.1402 0.1644 0.1799 0.1919 0.1945 0.1959 0.1986 0.1990 O.DJJ 0.2553 0.2724 0.2761 027&1 0.2819
8.00 0.1150 O.I~ 01400 0.1471 01486 0.1494 0.1509 0.1513 0.1718 0.1842 0.1935 0.1955 0.1965 0.1986 0.2148 0.2438 0.2615 0.2747 0.2775 0.2790 0.2819

10.0 0.12<ll 01342 0.1421 0.1479 01491 0.1497 0.1509 0.1589 0.1165 0.1869 0.1945 0.1961 01969 0.1986 0.2255 0.2506 0.2653 0.2761 0.2784 0.2796 0.2819
15.0 0.1294 0.1393 0.1449 0.1489 01497 0.1501 0.1509 0.1702 0.1833 01906 0.1959 0.1969 0.1975 0.1986 0.2416 0.2602 0.27~ 0.27&1 0.2796 0.2&JJ 0.2819
20.0 0.1342 0.1'121 0.1464 01494 0.1500 0.1503 0.1509 0.1765 0.1869 0.1926 0.1965 0.1974 0.1978 0.1986 O.~ 0.2653 0.2734 0.2790 0.2!)1 0.2a77 0.2819
25.0 0.m2 0.1438 0.1473 0.1497 0.1502 0.1504 0.1509 0.1805 0.1891 0.1937 0.1969 0.1976 0.1979 0.1986 0.2563 0.2685 0.2750 0.2796 0.2Ill5 0.2810 0.2819
30.0 0.1l93 0.1449 0.1479 01499 0.1503 0.1505 0.1509 0.1833 0.1906 0.1945 0.0IJn 0.1978 0.1980 0.1986 0.2602 02706 0.2761 0.2799 0.2a77 0.2811 0.2819
~.O 0.1421 0.1464 0.1486 0.1502 0.1505 0.1506 0.1509 0.1869 0.1926 0.1955 0.1976 0.1980 0.1982 0.1986 0.2653 02734 0.2776 0.2804 0.2810 0.2813 0.2819
50.0 0.1438 0.1473 0.1491 0.1503 0.1506 0.1507 0.1509 0.1891 0.1937 0.1961 0.1978 0.1981 0.1983 0.1986 0.2685 0.2750 0.2784 0.2807 0.2812 0.2814 0.2819
, 0.1509 0.1509 0.1509 0.1509 .15097 0.1509 0.1509 0.1509 0.1986 0.1986 0.1986 0.1986 0.1986 0.1986 0.1986 0.2819' 0.2819 0.2819 0.2819 0.2819 0.2819

The k. values art' enclosed by thick line!>.
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In Table 1, the k1 values are boxed separately. At any t/J, only the controlling value
of k 1 or k2 , i. e., the smaller of the two, is listed. The t/J at which both values are listed
is a transitional t/J between Mode 1 and Mode 2 failures, or is very close to it.

The values of k1 and k2 can also be presented as a set of non-dimensional torsion
bending interaction diagrams. A typical set of such diagrams for the 250 x 500mm re
ference section with p = 0.50 Pmax are shown in Fig. 2. The ordinate of any of the in
teraction diagrams corresponding to a given combination of t/J and '\, gives the value
of k1 or k2 depending on the controlling mode of failure indicated in the figure.

0
0 OJ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio
Mn

~

FIG. 2. Interaction diagrams for the 250 x SOOmm reference section.

Once M~l is estimated, as described above, the section is then designed for flexure.
Next, depending on whether k} or k2 was used to find M~l' the appropriate equations
are used to carry out the torsion design of the section.

In the next section, four design examples are present ~d; Examples 1 and 2 show
designs ofMode 1 and Mode 2 controlled cases, respecth ely, while Example 3 shows
a case with its design t/Jvery close to a transitional t/J of the reference section. Example
4 illustrates how the torsional moment capacity in Mode 3 is enhanced, if required, as
discussed below.

After a section is designed as described, its torsional capacities in Modes 1, 2 and 3
are checked. Since only k j or k2 was used in obtaining M~l' the checking may indicate
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a premature failure in Mode 3, especially if the design l/J is high or the section has a
low top steel ratio, p'. In that case, the design is modified by increasing the top steel
area A:. Equation 23 can be expressed in a different form to obtain the value of R3 re
quired to ensure adequate strength in Mode 3. Replacing T3 by Tn for Mode 3 failure
and cancelling llKI from both sides, Eq. 23 can be written as

(34)

Equation 34 gives the required vc lue of R3• Next, the corresponding A 03 and hence
the top steel area A ; required to give an adequate torsional capacity in Mode 3 can
be obtained to finalize the design as will be illustrated in Example 4 as mentioned
earlier.

After a section has been designed fOI flexure and torsion as outlined above, its
shear capacity is checked. This is of particular importance in cases where AOl(= MOl/VOl
where VOl is the pure shear capacity A) is greater than or close to the design A. This is
because, as indicated in Fig. l(b), at this range of A, the shear capacity of a section is
overestimated by Eq. 2.

Collins et a/.[8] suggested that the reduced nominal shear capacity Vn' of a section
subjected to torsion, bending and shear, can be obtained from

- Tn
VOl = Vn + 1.6 b (35)

in which the pure shear capacity VOl' is given by

0.17 vr: bd + 2 Awfwy d
s·

(36)

(37)

where band d represent the width and effective depth of the section, respectively.

If Vn~ V,LeI>, then the shear capacity of the section is deemed to be adequate.
However, if Vn< Vu/eI>, then the shear capacity of the section is to be increas~das il-
lustrated in Examples 1 and 2. .

The design procedures discussed above are listed below.

A. Design for flexure

1. k1 or k2 is obtained from Table 1 for the design values of l/J and A, and an as
sumed value of p.

2. Estimated pure flexural mOII1ent M~l' is obtained at Tu/eI>(kl or k2) and a sec
tion is designed for flexure using M~l. Then steps (3) through (5) are followed if
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Mode 1 controls (for k1 < k2). Otherwise, steps (6) through (8) are followed.

B. Design lor torsion (Mode 1 controls)

3. Values of MOl' Cl, IL, ~·and kl( = Tu/cP MOl) of the section designed in step (2)
are obtained, where IL is a factor involving section dimensions.

4. Equations 12 and 8 are used to find Kl and r in terms of stirrup spacing s for an
assumed size of stirrup.

5. The values of K1 and r are substituted in Eq. 4 to obtain stirrup spacings. The
calculations may be repeated for a different stirrup size until a suitable spacing is ob
tained. A practical spacing is selected and step (9) is carried out.

C. Design lor torsion (Mode 2 controls)

6. Values of M02 , R2 and 8 of the section designed in step (2) are obtained.

7. Equations 16 and 8 are used to find K2 and. r in terms of s for an assumed size
of stirrup.

8. The values of K2 and rare substituted in Eq. 5 to find stirrup spacing s. The cal
culations are repeated until a suitable spacing is obtained. A practical spacing is
selected and step (9) is carried out.

D. Checking shear capacity

9. Equations 37 and 35 are used to get VOl and Vn' respectively. If Vn~ Vu/cP,
step (11) is performed. Otherwise, step (10) is carried out.

10. lin is replaced by Vu/cP in Eq. 35 to obtain the required enhanced VOl which is
then substituted in Eq. 37 to obtain the stirrup spacing needed to satisfy the shear re
quirement. A practical spacing is selected and step (11) is performed.

E. Checking torsion capacity
11. The torsional moment capacities in Modes 1, 2 and 3, of the section are

checked by using Eqs. 1,2 and 3 to ensure Tn :=; TI , T2 and T3•

12. If T3 < Tn' Eq. 34 is. used to ensure adequate torsional moment capacity in
Mode 3 by providing the required top steel area.

Design Examples

Four design examples covering Modes 1, 2 and 3 as well as shear governe~failure
cases are presented. Some of these have a and p different from those of the 250 x
500mm reference section illustrating the usefulness of Table 1for such cases. Exam
ples 1, 2 and 3 have been designed with p = 0.5 Pmax (=0.0185) and Example 4 with p
= 0.0120. The nominal values of torsional moment, bending moment and shear force
used in the examples, are presented in Table 2. In all the examples,!: is ta!cen as 27.6
MPa with!wy andfy as 276 MPa. Results of calculations are presented in Tables 4,5
and 6. Figure 3 shows the sections selected at various stages of design.
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TABLE 2. Data used in the design examples.

t/J= ,\ = M' =
01

T M V Assumed coL (2)-" -" -" From Table 1Example 0.85 0.90 0.85 col. (2) col. (3) steel
col. (8) or (9)

No.
col. (3) col. (4)

ratio k1 k2

(kN-m) (kN-m) (kN) (m) (kN-m)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 10.0 250.0 420.0 0.04 0.60 0.0185* 0.0304 - 328.95
2 75.0 150.0 250;0 0.50-- 0.60 0.0185* - 0.1402 534.95

3 115.0 360.0 240.0 0.32 1.50 0.0185* 0.1573 0.1576 731.09
4 120.0 30.0 150.0 4.00 0.20 0.0120 - 0.2224 539.57

*p =0.5 Pmu

012 @
130c/c

012@
120c/c

f/J12@
110 clc

208

Example 1 Example 2 Example 3 Example 4

(a) Trial sections selected for estimatE'd pure moment MOl (all
with assumed 12mm diameter stirrups)

308

Example 1 Example 2 Example 3 Example 4

(b) Trial sections with stirrup spacings obtained for Mode 1 or
Mode 2 failure consideration

[J~12@
100 clc

4 28

¢ 12@
90 clc

¢ 14@
110 clc

Example 1 ExamplE' 2 Example 3 Example 4

(c) Final design (all with 40mm clear cover and 12mm diameter
hangers unless indicated otherwise)

. Note ~ All dimensions are
in millim€'ters.

FIG. 3. Details of beam sections designed.
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Example 1

Design a rectangular beam section if Tu = 8.5 kN-m, M u = 225.0 kN-m and Vn =
357.0 kN.

Design for flexure

The design values of t/J and A along with that of k1 obtained from Table 1, are pre
sented in Table 2. It also contains the estimated required pure flexural moment M~l
(= 328.95 kN-m). Preliminary calculations indicate that a 300 x 600mm section with
four 28mm diameter bars will be satisfactory. The pure flexural moment capacity MOl
of the section is computed, with assumed 10mm diameter stirrups and 40mm clear
cover, as 331.16 kN-m.

The a, J..L, L1 and L1 ' values of the trial section are identical to those listed in Table 4.

Design for torsion

Since Mode 1 behavior is indicated, replacing T1 by Tu/cP in Eq. 13, k1 = 0.03020.
Substituting the values of k1 , t/J and L1 in Eq. 12, Kl = 0.02128. Also, substituting the
valueofa(= 2.0) in Eq. 4, K1 = 0.280r. Equating the two values of K l , r = 0.0760.

Next, from Eq. 8, for 10mm diameter stirrups, r = 6.306/s. Thus, s = 82.9mm.
Therefore, 10mm diameter stirrups may be used at 80mm spacing. However, this
spacing may be deemed to be too small and a larger size, i. e., 12mm diameter stirrup
can be used as shown herein.

The trial section with 12mm diameter stirrups is shown in ~ig. 3(a), and its details
are listed in Table 3. The flexural moment capacities of the section in positive, lateral

TABLE 3. Details of the trial sections shown in Fig. 3(a)

Example
b h A" d dz d3 Xl YI

No.

(mm) (mm) (mm2) (mm) (mm) (mm) (mm) (mm)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 300 600 2460 534 254 542 208 508

2 350 700 3930 610 304 642 258 608

3 400 750 4930 656 354 692 308 658

4 400 750 3440 671 354 692 308 658

TABLE 4. Flexural moment capacities and other parameters of the sections shown in Fig. 3(a).

Example
MOl Moo Moo

Moo M03 b b2 +bh b
.1 =1+...t. .1' =-1 +...t.

Awfwy 0.9 XI YIR =- R =- a =- JL=2b+4h ~ = 2;A r=
No. 2 MOl 3 MOl h l/JA 1/1 A 5 MOl

(kN-m) (kN-m) kN-m) (mm)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 329.80 89.28 33.53 0.27070 0.10166 2.lXX) 90.0 6.3025 4.782 2.782 8.993/5
2 589.76 164.26 39.82 0.27852 0.06752 2.(XX) 105.0 0.5833 1.350 -{).650 7.446/5
3 793.69 237.43 42.97 0.29915 0.05414 1.875 121.1 0.4167 \.252 "'().7~8 7.170/s

4 588.57 171.69 42.97 0.29171 0.07301 1.875 121.1 0.2500 1.150 -{).850 9.665/5
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and negative bending are given in Table 4. Using MOl = 329.80 kN-m from Table. 4
and replacing TL by Tul e/> in Eq. 13, k 1 = 0.03032. Substituting the values of k

l
, t/J and

~ in Eq. 12, K 1 = 0.02172. Equating this with the value of K I given by Eq. 4, r =
0.07757.

Also, as shown in Table 4, Eq. 8 gives r = 8.993/s. Equating the two values of r, s
= 115.9mm. Therefore, 12mm diameter stirrups are selected with 110mm spacing as
shown in Fig. 3(b).

Checking for shear

The pure shear capacity_VOl' and AOI of the section ~hown in Fig. 3(b) are computed
in Table 5. From Eq. 35, Vn = 392.6 kN < Vule/> (= 420.0 kN). .

TABLE 5. Pure shear capacity and Aot of the sections shown in Fig. 3(b).

Example
b d V = s V = VOl = MOl Aot =

No. c s

0.17 Vf; bd
2Awfwy d MOl

V + Vs c s VOl

(mm) (mm) (kN) (mm) (kN) (kN) (kN-m) (m)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 300 534 143.1 110 ' 302.8 445.9 329.81 0.740

2 350 610 190.7 120 317.1 507.8 589.76 1.160

3 400 656 234.4 130 314.7 549.1 793.69 1.445

4 400 671 239.7 100 418.5 658.2 588.57 0.894

The required enhanced pure shear capacity of the section is, therefore, obtained
by replacing Vnby Vule/> in Eq. 35 as 420 + 1.6Tule/>b = 473.3 kN. Next, putting VOl =
473.3 kN in Eq. 37, S = lOO.9mm. Therefore, the stirrup spacing is reduced from
110mm to 100mm as shown in Fig. 3(c).

Torsional moment capacity

The torsional moment capacities in Modes 1, 2 and 3 of the section shown in Fig.
3(c), are computed in Table 6. The computed values of r, R2, R3, Kl and K2 of the sec
tion are also listed in the table.

TABLE 6. Calculation of torsional moment capacities of the sections shown in Fig. 3(c).

Example r KI kl TI = kl MOl R2 K2

No. from Eq. (8) from Eq. (4) from Eq. (14) (kN-m) from Eq. (6) from Eq. (5)

(1 ) (2) (3) (4) (5) (6) (7)

1 0.08993 0.02518 0.0312 10.29 0.27070 0.05621

2 0.08295 0.02323 0.1805 106.45 0.27852 0.05184

3 0.08826 0.02592 0.1740 137.63 0.29925 0.05373

4 0.09665 0.02838 0.2822 166.10 0.33218 0.05883
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k
2 T2 = k, MOl R

J
k

J TJ = kJ MOl Tn
Expected

failurefrom Eq. (19) (kN-m) from Eq. (7) from Eq. (27) (kN-m) (kN-m)
mode

(8) (9) (10) (II) (12) (13) (14)

0.0338 11.15 0.10169 -D.0040 - 1.32 10.29 1

0.1518 89.53 0.06752 0.4714 278.01 89.53 2

01790 141.58 0.05416 0.5928 468.92 137.63 1

0.2236 131.60 0.21297 0.2154 126.80 126.78 3

Table 6 shows that Tp Tz and TJ are 10.29, 11.15 and -1.32 kN-m, respectively.
The negative sign of TJ indicates that Mode 3 failure is not feasible. Thus, the
theoretical torsional moment capacity Tn' is 10.29 kN-m and the failure will be in
Mode 1.

Example 2

Design a rectangular beam section if Tu = 63.75 kN-m, M u = 135.0 kN-m and
Vu = 212.5 kN.

The estimated flexural moment capacity M~t ' is given in Table 2. A corresponding
preliminary trial section is shown in Fig. 3(a). Various details of the section are pre
sented in Tables 3 and 4. Since Mode 2 behavior is indicated, Eq. 16 is used to get Kz
= 0.03639. Thus, from Eq. 5 and 8,5 = 128.2mm. A spacing of 120mm is, therefore,
selected as shown in Fig. 3(b).

Table 5 shows the pure shear capacity VOl and A01 of the section. Substituting the
value of VOl in Eq. 35, Vn = 164.9 kN < V/</>. Thus, as in Example 1, the pure shear
capacity of the section is increased to 250.0 + 1.6 T/<pb = 592.9 kN.

Substituting VOl = 592.9 kN in,Eq. 37, the required spacing for 12mm diameter
stirrups 5, is obtained as 94.6mm. Therefore, as shown in Fig. 3(c), a spacing of
90mm is selected.

Next, the torsional moment capacities in Modes 1, 2 and 3 of the section shown in
Fig. 3(c), are computed and presented in Table 6. As can be seen, the theoretical tor
sional moment capacity of the section is 89.53 kN-m, and Mode 2 failure is predicted.

Example 3

Design a rectangular section if Tu = 97.75 kN-m, M u = 324.0kN-m and Vu = 204.0
kN.

Table 2 shows the design T/M ratio (= 0.32) to be very close to the transitional t/J of
the reference section as indicated by the closeness of the kl and kzvalues. This close
ness, however, did not pose any special problem in the solution. Since ktwas slightly
smaller, it was used in estimating M~I and Mode 1 failure was assumed.
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The section shown in Fig. 3(a) is proportioned with a = 1.875. This indicates that
the interaction data of the reference section presented in Table 1can be conveniently
used in the design of sections with different values of a.

The pure shear capacity of the section shown in Fig. 3(b) is presented in Table 5.
As in the case of Examples 1 and 2, the reduced shear capacity Vn , was less than Vn/

cPo Accordingly, the shear capacity was increased. Calculations indicate that 14mm
diameter stirrups at 110mm as shown in Fig. 3(c) would be adequate.

Table 6 gives the theoretical torsional moment capacjty Tn' of the section shown in
Fig. 3(c), as 137.63 kN-m.

ExampJe4

Design a rectangular beam section if Tu = 102.0 kN-m, M u = 27.0 kN-m and
Vu = 127.5 kN.

The high value of t/J (= 4.0) in Table 2 indicates that Mode 3 failure may occur.
However, as k3 values are not available, a section will be initially proportioned on the
basis of the pure flexural moment M~l estimated by using k l or k2 value from Table 1.
The section will then be checked for Mode 3 failute. Since Table 1 does not contain
any value for p = 0.012, the required value of k2 is obtained by interpolation. The k2
and the estimated flexural moment M~l are presented in Table 2. A section propor
tioned for M~l are presented in Table 2. A section proportioned for M~l is shown in
Fig. 3(a) and its details are given in Table 3.

Design procedures similar to those used in the previous examples are then fol
lowed up to the checking of the shear capacity. The results of the various computa
tions are presented in Tables 4 and 5. Figure 3(b) shows the section with stirrup spac
ing decided on the basis of Mode 2 behavior. The calculations starting with the
checking of the shear capacity are presented here.

Substituting VOl from Table 5, in Eq. 35, V" = 178.2 kN > Vu/cP (= 150.0 kN). The
shear capacity is, thus, adequate although A01 > A(= 0.20m). This is because, as in
dicated in Fig. l(b), Eq. 35 does not control the shear capacity at high T/V ratios.

In view of the high T/M ratio, the torsional moment capacity in Mode 3 of the sec
tion shown in Fig. 3(b) is checked next. Substituting the values of K 1,.1' and R3 in Eq.
27, k

3
is obtained as 0.12871. Therefore, T3 = k3 MOl =0.12871 x 588.57 =75.75 kN

m < Tu/cP(= 120.0kN-m). ThetorsionalmomentcapacityinMode3is, therefore, to
be increased at least to 120.0 kN-m. Setting T3 = Tu/cP in Eq. 34, R3 = 0.21297.

The required flexural moment capacity in negative bending is, thus, M03 = R3 MOl

= 0.21297 x 588.57 = 125.35 kN-m. The corresponding required p' = 0.0024. There
fore, the required steel area at the top, A; = p' bd3 = 0.0024 x 400 x 692 = 665mm2•

Two 22mm diameter bars having 760mm2 area are provided as shown in Fig. 3(c).

The torsional moment capacities of this section in Modes 1, 2 and 3 are presented
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in Table 6. As can be seen, the section has a nominal torsional moment capacity Tn'
<?f 126.80 kN-m and a Mode 3 failure is indicated. It may be mentioned here that the
top steel area can be increased further to enhance the capacity in Mode 3 and thereby
eliminate the possibility of failure in this mode.

Comparison with ACI Code Equations

The sections designed in Example~ 1, 2, 3 and 4 as shown in Fig. 3(c) were investi
gated by using the ACI code torsion equations for comparison purpose. It was found
necessary to modify the designs slightly, to satisfy the code spacing requirements, by
introducing longitudinal bars at middepth and also, in some cases, by changing the
hanger size. The modified sections are shown in Fig. 4. The figure also shows the tor
sional moment capacities of the sections as obtained by using the ACI code torsion
equations, as well as those given by the interactive strength equations, along with the
corresponding failure modes. As can be seen, except at a very low value of Tu ' i.e., in
Example 1, the torsional moment capacity is consistently underestimated by the ACI
code equations.

T
o
o

I
~300~

Example 1 Example 2

¢ 14@
110 cl c

Example 3 Exa rnple 4

T;"" = 10.,29 kN-m. Tn =97.07 kN-m. Tn =137.63 kN-m. Tn =126.78 kN-m.
. (Mode 1) (Mode 2)' (Mode 1) (Mode 3)

T~ = 11.12 kN-m. T~= 75.06 kN-m. T~= 112.48 k N-m. T~ = 107.06 kN-m.

T~ ':: Torsional strength as
per ACI Code

Note: All dImensions are
In millimeter

FIG.4. Comparison with torsional strengths given by ACI code equations.

Conclusions

The interactive strength equations developed by Hasnat and Akhtaruzzaman[16]
have been suitably adapted for the design of rectangular beams subjected to any
combination of torsion, bending, and shear.
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The design procedure basically consists of proportioning a section for a required
pure flexural moment capacity. The section is then designed for torsion using the
strength equations in their transformed forms.

The examples presented herein show that interaction data. of a reference section
are useful in estimating the required pure flexural moment capacity. The interaction
data based only on Mode 1 and Mode 2 considerations are found satisfactory in most
cases. However, when a possibility of Mode 3 failure exists due to high t/J and low p',
the design is to be checked and modified accordingly if required.

It is also necessary to modify the design when M/V ratio (A) is less than or around
A(n due to an overestimation of its shear strength by the basic strength equations.

Compared to the strength equations, the ACI code equations generally underesti
mate the torsional strength of beams subjected to torsion, bending and shear.
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Notation

The following symbols are used in this paper:

As,A;
A w
b
d, dz ,d3f:
fwy
I y
h
k l , kz ' k3
M

MOl' Moo ' Moo

r

s
T
TI , Tz' T3

Tn
Tu
V

VOl

Vc

Vn
Vn
Vs
Vu
X

Xl

Y
YI
a
.4
~'

B.
A
A01

IJ.
P
p'

Pmax
4>

'"

area ofbottom and top longitudinal steel, mmz;
area of one leg of stirrup, mmz;
breadth of beam, mm;
effective depth in positive, lateral and negative bending, respectively, mm;
cylinder compressive strength, MPa;
yield strength ofweb steel, MPa;
yield strength of longitudinal steel, MPa;
overall depth ofbeam, mm;
ratio between TI , Tz' T3 and MOl;
bending moment, kN-m;
pure flexural strength in positive, lateral and negative bending respectively,
kN-m;
estimated pure flexural strength in positive bending, kN-m;
factored bending moment, kN-m;
Awlwy 0.9 Xl YI

S MOl
spacing ofstirrups, mm;
torsional moment, kN-m;
torsional strellgth in Mode 1, Mode 2 and Mode 3 failure, respectively, kN-m;
nominal torsional moment capacity, kN-m;
factored torsional moment, kN-m;
shear force, kN;
pure shear capacity, kN;
nominal shear strength provided by concrete, kN;
nominal shear strength, kN;
reduced nominal shear strength, kN;
nominal shear strength provided by web reinforcement, kN;
factored shear force, kN;
shorter overall dimension of rectangular cross-section, mm;
shorter center-to-center dimension of closed stirrup, mm;
longer overall dimension of rectangular cross-section, mm;
longer center-to-center dimension ofclosed stirrup, mm;
hlb;
1 + IJ.1t/JA;
IJ.1t/JA-l;
VbI2T;
MIV,m;
MoI,lV01 ,m;
(b2 + bh)/(2b +4h),mm;
A/bd;
A;lbd;
0.75 x balanced steel ratio;
ACI code strength reduction factor; and
TIM.
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