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ABSTRACT. We review stationary axially symmetrical empty space-times
possessing similarity property. The solutions which we obtain generalize
the solutions of Lewis and van Stockum. The potentials and the null-tetrad
components of the Riemann tensor are computed. It is concluded that
rotating field solution. in an unrestricted sense, is incompatible with the
concept of self-similarity.

Introduction

The topic of similarity solutions constitutes a significant amount of work in the
theory of partial differential equations, most particularly when it happens that exact
solutions to non-linear equations remain elusive for long times. In reality, similarity
methods apply to any theory that the fields-streamlines are expressed in scalar poten
tials, while the presence of multi variables renders exact solutions almost hopeless.
As a prototype example, we mention the field of classical hydrodynamics, where
similarity solutions provide the basic feedback to any advancement taking place in
this particular topic.

In general, relativity similarity solutions to Einstein equations have not been
studied systematically, except in some particular cases of cosmological interestll] and
in connection with Ernst equation[2,3]. Some exact solutions well-known for decades
are in fact nothing other than similarity solutions, although they all arise in different
contexts. In this category, we can cite the solutions of Lewis[41, van Stockum[5] and
plane waves in the Rosen form.

In this paper, we don't intend a detailed exposition of the topic, but rather we re
strict ourselves to the stationary vacuum space-times alone. The problem is shown to
reduce in this special case to a single master equation; the one dimensional
Liouville's equation. From the solutions of this single equation, we prove that Lewis
and van Stockum solutions can naturally be generalized.
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In a previous paper[6), we had introduced a method of reduction for certain classes
of partial differential equations (pde) into ordinary ones that are readily solvable.
The method, together with its limitations, manifests itself best in problems where the
pde systems are derivable from a purely kinetic Lagrangian density. Further, the
Lagrangian density was defined via a geometrical method, known as the harmonic
mappings of Riemannian manifolds[7l, so that covariance of the formalism becomes
manifest. Reduction in the dependent variables is equally as important as the reduc
tion in the independent variables, however, the former should be taken cautiously in
the presence of a non-Abelian gauge group acting in the theory. Since we are in
terested in non-Abelian self-similar solutions, then, reduction to single dependent
functions reduces the solution to an Abelian sub-group automatically.

Gravitation has great impact in our daily life, ranging from the modest effect in
growing of plants to the very sophisticated space defence programs by its deflection
of the radar beams. Although our familiarity with this weakest force of nature is such
deep rooted, a complete understanding of it remains elusive yet. We maintain the be
lief, therefore, that any minor contribution in the field of gravitation will have direct
impact on empirical results within the coming decades.

Stationary symmetrical gravitational fields admitting two killing vectors, one
space-like and one time-like, are described by the canonical line element.

(1)

where all the metric functions depend at most on p and z. The vacuum equations,
Rj.Lv = 0, (i.e. the Ricci tensor vanishes) are
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The variational principle that yields these equations is provided by the Lagrangian

e41/l
L = 4 b pAp + "yz.\z> - 4 A (tIJ~ + t1J;) + T (w~ + w;) (6)

We shall proceed now by deviating from the usual trend of fixing the metric func
tion A equal to p. Although .\ = p, is considered to be a requirement of axial sym
metry and asymptotic flatness, we shall be violating these conditions by considering
A as a general function of p and z restricted only by equation (5). The structure of the
foregoing Einstein equations suggests that if the similarity variable is chosen as a har
monic function, then the equations simplify to a great extent. Being prompted by this
observation, we consider our metric functions t1J, wand"y to be only the function of
the harmonic .\ .
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The equations (2-4) reduce then into
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where a prime denotes fA .We readily observe that eq. (8) is integrated once to

yield the expression

(10)

where k is an arbitrary constant of integration. Further, the eq. (9) admits the integ
rability condition
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The lfJ equation takes the form

tV" + ! ~' k2
0+ - e-4'iJ

'A 2

(11 )

(12)

Defining, Z == e-2l~, transforms this equation into

Z" == 2'2 _ 1 z' + k2 Z3
Z 'A

(13)

which is identified as one of the degenerate forms of a third Painleve's transcendental
equation. This form, however, is not much impressive, therefore, we purse an alter
native transformation. Introducing

(14)

<I> == x - 2tV

transforms eq. (12) into the one dimensional Liouville's equation,

<I>,u == k2 e2<t> (15)

Corresponding to each distinct solution of this ordinary differential equation, we
construct a different similarity metric given by eq. (1).

Note, however, that this equation may admit solutions which violate the signature
of space-time and, therefore, should be discarded. The follo\ving three solutions are
the only significant solutions at our disposal.

(16)
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where a is an arbitrary real constant (=1= 0). The corresponding line element is

ds2 == (~l-{X - E x]+a) dt2 - ~ ~l+a dt d<t> -
4a2 a

(0:2 - 1)

- ~ 2 (dp2 + dz2) - A1+a d<t>2

ii) e-<I> == cos [a In ( ~ )]

(17)

(18)

where a is another constant such that the argument of In will be positive. The line ele
ment becomes

~ cos ( k In ~) dt2 - 2~ sin ( k In ~ ) dt d<l>a a

_ ( 1 + 0:
2

)

- ~ 2 (dp2 + dz2) - A cos ( k In ~ ) d<t>2. ( 19)
a

iii) e-<I> == 1 + kx, (20)

which yields the line element,

ds2 == X (1 + k In A) dt2- 2 ~ dt d<t> - A

1
2 (21)

For the simplest choice ~ = p, the metrics (17) and (19) reduce to the ones given by
Lewis and (21) to van Stockum solutions, respectively. For k = 0 (i.e. no rigid rota
tion), the metric (17) reduces to the metric of Levi-Civita[8l, which for the special
parameters, a = ± 1, becomes the flat metric. The admissible ranges of the ~ func
tion are restricted severely by the existence of horizons in the above metrics.

Obviously, from eq. (5), a special class of function is provided by, X == Re f(p + iz),
where f is an analytic function in the (p,z) plane. Also, the separable forms of ~

sought in the form, ~ = p R(p) Z(z), are given by, ~ = p ( sin wp ) eWz , where
wp

w is a separation constant. The condition ~ = p, is recovered in the limit w~ O.

Finally, the metrics given above may be important in connection with the spinning
cosmic strings that have been proposed recently in the quantization of gravityr9). To
our knowledge these metrics were absent in the literature.

Detailed Analysis of The Solutions

In the foregoing section, we have obtained the solutions for self-similar gravita
tional fields in stationary axially symmetric geometry, and we proceed now to derive
the physical implications of our model. Gravitation, in the language of tensors and
spinors provide a rich structure described by a multitude of complex potentials. In
order to obtain physical results, one has to go through the tedious task of computing



Similarity Analysis for the Gravitational Field 5

all non-vanishing potentials and other related elements. Our approach will be the
one due to Newman and Penrose (NP)lJOl, \vhich is considered to be equivalent to the
Einstein's tensor formulation of general relativity. Consider a general class of line
element.

(22)

where the metric functions, F, G, H, ~ and "Yare functions of p and z only. As a mat
ter of fact, this form of the line element constitutes a good starting point to study
more general fields when the time dependence is incorporated as well. However, in
this article we shall suppress any dependence on time and study the much simpler
case. The NP null-tretrad in which we compute the potentials is given by

\12 n == F 8 t _ K + H 8<f>
~ ~ F ~

\12 m == e-Y-4J (8p + i 5z )
~ ~ ~

The metric functions here are related to the ones of the line element (1) by

F == e4J , H == we24J , G2 == x.2 e-2lv - w 2 e2l!J

(23)

(24)

The non-vanishing spin coefficients ( == complex potentials), ex, B, T, 71", K and v are
given as follow:

e24J
2\12 e-Y-4J ~ == (~ - "Y)p + i (~ - "Y)z + 2A (wp + iwz) ,

2\12 e-Y-4J T == (In A)p + i (In ~)z ' (25)

2\12 e-Y- 4J 'IT == - (In A)p + i (In A)z '

2\12 e-y-I\I K= - (In >-)p - i (In >-)z + 2 (l\Jp + il\JJ + e~I\I (top + itoz) ,

All these components correspond to the single potential function of the classical
Newtonian gravitation since it has been replaced by the Einstein's theory of gravita
tion.

Since the Weyl components of the Riemann tensor are rather tedious compared to
the potentials, we shall be satisfied only by their self-similar counterparts that
simplifies the expressions to great extent. In the null-tretrad (23) only ~2' ~o and ~4

are nonzero and are given as
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1 2<iJ
( ,I,' - + e ') {A A + 2'A
'I' 2A Th w pp - zz I pz

(26)

where a prime implies :A

+ 2(\(1' - -y') (A
p

+ iAy}

, I e2<iJ ,
(\(I - 2A - ~ w ) {App

+ 2 (\(I' - -y') (A
p

- iAz)2} ,

(27)

(28)

Although the null-tetrad (23) serves to describe all the solutions (17,19,21) pretty
well, there are some benefits in describing (21) in an alternative tetrad. Since the
generic form of the line element in this case is

ds2 = e2<iJ dt (dt - 2w d<!» - e2('y-<iJ) (dp2 + dz2) ,

we choose the following null-tetrad,

n = 51 -2w 5<1>
f.l f.l f.l

(29)

(30)

(31 )

V2 m = e-y-I/J (5 P + i5 z)
f.l f.l f.l

Non-vanishing spin coefficients and the Weyl curvature components are tabulated
below (note that the self-similarity requirement has not been imposed)

20 e-y-I/J 0: = (In wl12 e-y-21/J)p - i (In will e"r21/J)z '

20 e-y-I/J f3 = (In W
lh e--Y)p + i (In w'h e--Y)z J

V2 e-y-<iJ 'IT = - (In wY2 el/J)p + i· (In w'h e<iJ)z '

V2 er<iJ T = (In willel/J)p + i (In will el/J)z '

J-T e-y..-I/J v = (In w)p - i (In w)z

\(I, = \(13 = \(10 = o.

-2 e2(r<iJ) \(12 = W- 'h e-<iJ [(will c<iJ)pp + (uih e<iJ)zJ '

e2-y \(14 = (In w)zz - (In w)pp + 2i(ln w)pz +

+ 2 [(In w)p - i (In w)z] [(-y - 2\(1)p -i (-y - 2t/J>z]

Upon imposing the self-similarity condition, \(12 and \(14 simplify into

(32)

(33)
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(34)

(35)k X.-3/2 + ~ (\ _ '\)2 }
1jJ4 = (1 + k In A)2 {App - Azz - 2iApz A "-p l"-z .

If the choice k == 0 is made, it can be seen that only tV2 survives and the resulting space
becomes type-D, From the expression of tV4 in (33) it is also observed that the solu
tion does not possess w == 0 limit. In fact, W == 0 leads to a degenerate space-time and,

therefore, should be discarded. The solution, W = ~ ,also reveals
1 + InA

that for finite X. (X. =1= 0), w does not become zero. The solutions (21) and (23)
generalize the fields of sources in rigid rotation,

No matter which choice of null-tetrad basis is made in the space-time manifold, \fJ2
emerges real and rejects any complex components. The important conclusion to be
drawn out from this result is that self-similarity nature does not yield a rotating field
that resembles to the rotation given by the Kerr[ III metric.

The complex curvature components of all the above solutions arise in connection
with the z-dependence. If the metric is frozen in the z-direction, then, all conlponents
will be real.

We would like to check now, whether the solutions we have obtained are signific
ant or by some coordinate transformations they reduce to the previously well-known
Lewis and van Stockum solutions. To this end, we define new coordinates by

p' + iz' == f(p + iz) (36)

where f is an analytic function of this argument. One observes that p' == Re f(p + iz)
== X. is easily achieved, (Recall that a special class of Awas given as the real part of an
analytic function). However, we have

Idp' + idz' I =f:. Idp + idz I
meaning that the solutions are different. In other words, the similarity character does
not remain invariant under the transformation (36), but admittedly it maps our solu
tions to some other solutions obtained by other means in different contexts.

Finally, in order to discuss the singular points of our space-time mainfolds, we
have to substitute the explicit forms of the X. function into tV2' tVo and lfJ4. For instance,
the simplest possible choice, in which w == 0 and A.. == p, which recovers the Levi-Civita
metric as a degenerate form of solution (17), diverges at the origin, p == O.

Conclusion

Our initial motive in conducting this research was to explore to what extent a gen
eral solution of stationary axially symmetrical vacuum fields can be obtained by
employing similarity variables exhaustively. We have observed, as a result, that
genuinely rotating fields can not be obtained by this method, leaving thus the Kerr
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metric once more unrivalled in this respect. Although in hydrodynamics genuine ro
tation arises albeit the self-similarity requirement, it seems that the complete anal
ogy with the gravitational field breaks down. Our procedure can naturally be ex
tended to the case of space-times admitting two space-like killing vectors. In this lat
ter case, polarization of the gravitational waves play the similar role of rotation of
our model presented in this paper.

Another conclusion to be drawn out is that in order to admit stationary twist, we
'must have \fJ2 = 0 with Re ~o =1= 0 =1= 1m \flo' (or the same conditions for \fl4). This is not
satisfied by any of our solutions, therefore, such a twist solution does not exist.

An interesting study consisting of a detailed analysis of similarity black-holes in
gravitation will be our objective in a later communication.
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