THERMAL ENGINEERING AND DESALINATION TECHNOLOGY DEPARTMENT

COURSE SYLLABI

						COURSE SYLLA	ABUS								MEP2	61_01_I	-all_2007	Page - 1			
Code:	MEP2	261	Name	:	Thermodyna	mic I									Туре:		Require	d			
Number of	Credi	t:	4	. :	Section:	01	Seme	ster:			F	all Y	Year:	2007	Number	of stud	ents:	23			
Course Catalog Description	Conce and c refrige	epts a ontrol eration	nd defi volum 1 cycle:	initions e. Sec s inclu	s. Properties cond law of T iding Ranking	of pure substances. Fin hermodynamics. Entrop e and vapor compression	rst law py. Prir on cycl	of the nciple es.	ermod of inc	ynami crease	cs. Sp of ent	ecific ho tropy an	eats and en nd definition	thalpy. Ap of isentro	plication to pic efficien	first lav cy. Som	v on closed s e power and	ystem			
Prerequisi	te:	Math.	102E	Gene	ral Mathema	tics II, Phys. 101E Phys	sics I														
Taxtbook		Autho	ors:	Sonnta	ag, Borgnakl	ke and Van Wylen			Name	e :	Fund	amental	ls of Thermo	odynamics	6						
TEALDOOK.		Publis	sher:	John \	Wiley & Sons	Edition:	6th I	Ed.	Place):		NY	Year:	2	003 ISE	BN:	04714	28833			
Other Req Materials:	uired		Lab m	anual	s are purcha	sed at College Copy Sh	nop														
						Course Top	oics [Su	uppo	rted C	LO's	[Supp	oorted F	PO's]								
T1:Introduction	on, conc	epts an	d Defini	itions[1	, 2][a]																
T2:Properties	of a pu	re subst	ance[3,	4, 5][a]																	
T3:Work and	heat[6,	7, 8][a,	e, n]																		
T4:First law o	of Thern	nodynar	nics[9,	10, 11,	12][a, e, n]																
T5:First law o	of Thern	nodynar	nics for	a contr	ol volume[13, 1	[4][a, e, n]															
T6:The secon	d law of	thermo	odynami	ics[15, 1	16, 17, 18][a, e,	j, n]															
T7:Entropy[1	9, 20, 2	1, 22][a	, e]																		
T8:Second lav	w analys	sis for a	control	volume	e[23, 24][a, e]																
T9:Power and	l refrige	ration c	ycle[25]][a, e]																	
T10:Thermod	lynamic	laborate	ory[26][[b, g]																	
Supp.Prog	jram O	utcon	nes (A	ve.Re	el:Repitition)	a(3.0:25), b(3.0:1), e	e(3.0:10)	, g(3.0):1), j(1	.0:2), I	า(1.0:6)										
Performa	ince Ta	arget	for Co	urse l	Learning	Contribut	tion of	cour	rse:				Class/Lab	ooratory S	Schedule:		Lecture:	Lab:			
(Object	ives A	ssess	sment	: 1	Math & Basic Sciences:	:	0	%	0.0	hrs.	Numbe	er of Sessior	ns per wee	ek:		3	1			
At leas	st score	e:	No.	of stud	dents, %:	Engineering Sciences:		100	%	4.0	hrs.	Duratio	on of each s	session, m	in.:		50	120			
Direct, %	InDire	ct(1-5)	Dire	ect	InDirect E	Engineering Design:		0	%	0.0	hrs.	Inst	ructor name	ame: Dr. Abdul Rahim A. Khaled							

60	3	100	100	General Education:	0	%	0.0	hrs.		Date of prepa	aration:	03/0	02/2008
			COURS	E SYLLABUS (Course Learni	ng Ob	jectiv	ves)				MEP261_01_Fall_2)07	Page - 2
CLO_1	Students w	ill be able to	define a th	ermodynamic system, closed a	nd op	en sys	stems,	state,	equilibrium, pro	cess, cycle ar	nd system properties.		
CLO_2	Students w	ill be able to	define inte	nsive/extensive properties and	explai	n the	Zeroth	ı law o	f thermodynami	CS.			
CLO_3	Students w heated vap	ill be able to or).	define the	pure substance, different phase	es (co	mpres	sed lie	quid, s	aturated liquid p	hase, saturate	ed liquid-vapor mixture a	nd supe	er
CLO_4	Students w	ill be able to	determine	the properties of a pure substa	nce us	sing th	nermo	dynam	ic tables				
CLO_5	Students w	ill able to de	fine the ide	al gas and state the ideal gas r	elatior	۱.							
CLO_6	Students w	ill be able to	define the	work as a system property.									
CLO_7	Students w	ill be able to	calculate t	he system work for a closed sy	stem ı	underg	going o	differer	nt quasi-equilibri	um processes			
CLO_8	Student wil	l be able to c	define the h	eat as a system property.									
CLO_9	Students w	ill be able to	explain the	e first law of thermodynamics.									
CLO_10	Students w	vill be able to	o define the	internal energy and enthalpy for	or a sy	vstem.							
CLO_11	Students w	ill be able to	define the	specific heat at constant press	ure an	d spe	cific he	eat at o	constant volume	•			
CLO_12	Students w	vill be able to	o apply the	first law of thermodynamics on	closed	d syste	ems.						
CLO_13	Students w	vill be able to	o apply the	first law of thermodynamics on	a con	trol vo	lume	where	a steady state fl	ow process is	performed.		
CLO_14	Students w	ill be able to	define vari	ous control volumes: e.g. turbir	ne, cor	npres	sor, he	eat exc	hanger, throttle	valves, nozzle	es, diffusers and mixing	chambe	ers.
CLO_15	Students w	vill be able to	o define the	rmal reservoirs, heat engines,	refrige	rators	and t	ne hea	t pumps.				
CLO_16	Students w	ill be able to	explain the	e statements of the second law:	Kelvi	n-Plar	nck sta	temen	t and Clausius s	statement.			
CLO_17	Students w	ill be able to	define the	mal efficiency, coefficient of pe	rforma	ance,	revers	ible pr	ocesses and irre	eversible proce	esses.		
CLO_18	Students w	ill be able to	define the	Carnot cycle.									
CLO_19	Students w	ill be able to	define the	entropy as a system property.									
CLO_20	Students w	ill be able to	find the en	tropy change of a pure substar	ice, a	solid,	a liqui	d and	an ideal gas.				
CLO_21	Student wil	l be able to o	define the is	sentropic process undergoing a	given	proce	ess.						
CLO_22	Students w	ill be to defir	ne the entro	py generation and apply the se	econd	law of	therm	iodyna	mics for closed	systems.			
CLO_23	Students w	ill be able to	apply the s	second law of thermodynamics	for co	ntrol v	olume	s unde	ergoing steady s	tate flow proc	esses.		
CLO_24	Students w	ill be able to	define the	isentropic efficiency of turbines	and c	ompr	essors						
CLO_25	Students w compressio	ill be able to on cycles.	identify an	d analyze some ideal cycles: e	g. Ra	nkine'	s cycle	e, Otto	s cycle, Diesel's	s cycle and the	Brayton's cycle, Ideal v	apor	
CLO_26	Students w	ill be able to	conduct ar	nd analyze experiments.									

					COURSE SYLLA	BUS							MEF	290_05_	Fall_2007	Page - 1
Code:	MEP29	0	Name:	Fluid Mecha	anics								Туре:		Require	d
Number of	Credit:		4	Section:	05	Semeste	r:			Fall	Year:	2007	Numbe	er of stud	lents:	18
Course Catalog Description	Concer Bernou	ots an Illi's eo	d defir quatior	nitions. Fluid stat n. Dimensional a	ics. Forces on submerge nalysis, the Pi–theorem,	ed surface and simil	es and arity.	l bodies Pipe flo	. Nor w, Lo	–viscou sses in	is flow, Conse conduit flow.	ervation of Laminar a	mass, m nd turbu	nomentun lent flow	n and energy	equations.
Prerequisi	te: N	/lath. '	102E (General Mathema	atics II, Phys. 101E Phys	sics I										
Textbook:	А	lutho	rs: E	By: Yunus A. Cer	igel and John M. Cimbal	а	Na	ame:	Flu	d Mech	anics, Fundar	mentals ar	nd Applic	ations		
TCALDOOK.	Р	Publish	ner: N	//cGraw-Hill	Edition:	Intl Ed.	Pla	ace:		NY	Year:	2	006	SBN:	00711	15668
Other Req Materials:	uired	L	_ab ma	anuals are purch	ased at College Copy Sh	юр										
					Course Topi	ics [Supp	oorteo	d CLO's	s][Su	pportec	d PO's]					
T1:Introduction	on and Ba	sic Coi	ncepts[(CLO_1, CLO_2][a,	b, g, k]											
T2:Properties	of Fluids	[CLO_	<u>3</u> , CLC	D_4][a, b, g, k, l]												
T3:Pressure a	nd Fluid S	Statics[CLO_5	5 , CLO_6, CLO_7][a, b, e, g, l]											
T4:Fluid Kier	natics[CL	۵_8][۵	a, e]													
T5:Mass, beri	noulli, and	l Energ	gy Equa	tions[CLO_9, CLO	_10, CLO_11, CLO_12][a, b,	e, g]										
T6:Momentui	m Analysi	s of Fl	ow Syst	tems[CLO_13][a, b,	e, g]											
T7:Dimension	nal Analys	sis and	Modeli	ng[CLO_14, CLO_1	5][a, e, k]											
T8:Flow in Pi	ipes[CLO	_16][a	, b, e, g	, k]												
Supp.Prog	ram Ou	itcom	es (Av	ve.Rel:Repititior	a(3.0:16), b(3.0:6), e	(3.0:10), g((1.8:6),	, k(3.0:4)	, I(3.0	2)						
Performa	ince Tar	rget fo	or Cou	urse Learning	Contribut	tion of co	ourse	:			Class/Lat	ooratory S	Schedule	e:	Lecture:	Lab:
	Objectiv	ves As	ssessi	ment:	Math & Basic Sciences:	0	%	6 0.0	hrs	. Numl	ber of Sessior	ns per wee	ek:		2	1
At leas	t least score: No. of students, %: Engineering Sciences: 100									. Dura	tion of each s	session, m	in.:		75	120
Direct, %	InDirect	(1-5)	Dire	ct InDirect	Engineering Design:	0	%	% 0.0	hrs	s. Ins	structor nam	e:		Dr. Abd	lullatif Gari	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date	of prepa	aration:	03	/02/2008
			COURSE	E SYLLABUS (Course Learning	ng Ob	jectiv	ves)				MEP290_05_Fall_2	007	Page - 2
CLO_1	Identify the	basic prope	erties of fluid	s and the various types of fluid	flow	config	uratior	ns enc	ountered in practice.				
CLO_2	Recognize	the importar	nce and app	lication of dimensions, units ar	nd dim	ensio	nal ho	moger	eity in engineering c	alculation	S.		
CLO_3	Compute th	e viscous fo	orces in vari	ous engineering applications a	s fluid	s defo	rm du	e to th	e no-slip condition.				
CLO_4	Discuss the	various effe	ects of surfa	ce tension, e.g. pressure differ	ence	and ca	apillar	/ rise.					
CLO_5	Determine t	the variation	of pressure	e in a fluid at rest.									
CLO_6	Calculate th	ne forces ex	erted by a fl	uid at rest on plane or curved s	subme	rged	surfac	es.					
CLO_7	Compute the effect of buoyancy on submerged bodies.												
CLO_8	Identify the	various type	es of flow ar	nd plot the velocity and acceler	ation v	/ector	s.						
CLO_9	Apply the m	nass conser	vation equa	tion in a flow system.									
CLO_10	Utilize the E	Bernoulli equ	uation to sol	ve fluid flow problems and reco	ognize	its lin	nitatior	۱.					
CLO_11	Utilize the e	energy equa	tion to deter	mine turbine power output and	l pump	oing p	ower r	equire	ments.				
CLO_12	Incorporate	the energy	conversion	efficiencies in the energy equa	tion.								
CLO_13	Determine t	he various l	kinds of forc	es and moments acting on a fl	uid flo	w field	J.						
CLO_14	Apply the m	nethod of rep	peating varia	ables to identify non–dimensio	nal pa	ramet	ers.						
CLO_15	Understand	the concep	ot of dynami	c similarity and how to apply it	to exp	erime	ntal m	odelin	g.				
CLO_16	Calculate th	ne major and	d minor loss	es associated with pipe flow sy	/stem	and d	eterm	ne the	pumping power requ	uirements			

						COURSE SYLLA	BUS							MEP360	_02_Fall_2007	Page - 1			
Code:	MEP3	60	Name	:	Heat Transfe	er							Ту	pe:	Require	эd			
Number of	f Credit	t:	4	L :	Section:	02 5	Semester	:		F	all Year:	2007	Nu	umber of	students:	20			
Course Catalog Description	Gener analys excha	al Cor sis. Co nge bo	nductio onvec etwee	on equ tion he n surfa	uations, com eat transfer, f aces. Black	posite walls and cylinders forced external and interr and gray bodies. View fa	s. Heat g nal conve actors and	enerat ction h d enclc	ion. He eat tra sures	eat tra nsfer.	nsfer from extend Natural convection	ed surfac on. Radia	es. Tration h	ansient a eat transi	and two-dimensior fer, emission and	al neat			
Prerequisi	ite:	MEP 2	261 Tł	nermo	dynamics I, I	MEP 290 Fluid Mechanic	s												
Toythook	4	Autho	ors:	Incrop	era/DeWitt/E	Bergmann/Lavine		Nam	e:	Fund	amentals of heat	and mass	s trans	fer					
TEXIDOOK.	Γ	Publis	her:	John V	Niley & Son	s Edition:	6th Ed.	Plac	e:		NY Year	:	2006	ISBN	:	C			
Other Req Materials:	uired				s are purcha	Course Topic	cs [Supp	orted (CLO's	[[Supj	ported PO's]								
T1:Introducti	on[1, 2][a, e]																	
T2:Introducti	on to con	duction	n[3, 4][a, e, m]															
T3:Steady 1-	D conduc	tion[5,	6][a, e,	, m, n]															
T4:Two-D co	omputatio	nal cor	ductior	n analys	is[7][a, e, m]														
T5:Transient	conduction	on heat	transfe	er analys	sis[8, 9][a, e]														
T6:Introducti	on to con	vectior	n heat tr	ransfer[1	10, 11][a]														
T7:Forced co	nvection	heat tra	ansfer a	nalysis	for external flo	ws[12][a, e]													
T8:Forced co	nvection	heat tra	ansfer a	nalysis	for internal flo	ws[13][a, e]													
T9:Natural co	onvection	[14, 15	5][a, e]																
T10:Thermal	radiation	n[16, 17	7][a, e]																
T11:Radiation	n exchan	ge betw	veen su	rfaces[1	8][a, e]														
Supp.Prog	gram O	utcon	nes (A	ve.Re	l:Repitition): a(3.0:18), b(2.0:1), e(2	2.9:14), g(2	.0:1), m	n(2.0:4),	n(2.0:	2)					_			
Performa	ance Ta	rget f	or Co	ourse L	earning	Contributi	on of cou	irse:	-		Class/L	aborator	y Sch	edule:	Lecture:	Lab:			
	Objecti	ves A	ssess	sment	:	Math & Basic Sciences:	0	%	0.0	hrs.	Number of Sessi	ons per v	veek:		2	1			
At leas	st score	:	No.	of stud	dents, %:	Engineering Sciences:	100	%	4.0	hrs.	Duration of each	session	, min.:		80	120			
Direct, %	InDirec	:t(1-5)	Dire	ect	InDirect	Engineering Design:	0	%	0.0	hrs.	Instructor na	tructor name: Dr. Abdullah Turki							

60	3	100	100	General Education:	0	%	0.0	hrs.	D	ate of prepa	aration:	03	/02/2008
			COURSE	E SYLLABUS (Course Learni	ng Ob	jectiv	es)				MEP360_02_Fall_20	007	Page - 2
CLO_1	students wil	ll be able to	identify the	different modes of heat transfe	er mec	hanisı	ns.						
CLO_2	students wil	ll be able to	recall the e	nergy balance equation.									
CLO_3	Students wi	II be able to	define heat	conduction									
CLO_4	Students wi	II be able to	describe th	e heat diffusion equation for co	onduct	ion pr	oblem	s and	list its boundary c	onditions.			
CLO_5	Students wi	II be able to	derive heat	diffusion equation for steady	1-D cc	onduct	ion.						
CLO_6	Students wi	II be able to and extende	solve stead	ly 1-D basic heat conduction p	roblen	ns (pla	ane wa	alls, cy	linders, spheres,	composite w	alls, conduction with inte	ernal h	eat
CLO_7	Students wi	II be able to	apply finite	difference methods to solve st	eady	state 2	2-D he	eat bas	ic conduction pro	blems.			
CLO_8	Students wi	II be able to	define lum	ped systems and solve unstead	dy bas	ic hea	t conc	luctior	problems using I	umped analy	/sis.		
CLO_9	Students wi	ll be able to	solve unste	eady 1-D basic heat conduction	n prob	lems (plane	walls,	cylinders, sphere	s).			
CLO_10	Students w	vill be able to	o define hea	t convection.									
CLO_11	Student will	be able to c	describe vel	ocity and thermal boundary lay	/ers.								
CLO_12	Students wi over bank o	II be able to of tubes	solve basic	heat transfer problems involvi	ng for	ced co	onvect	ion ov	er flat plates, circu	ular cylinders	, non-circular cylinders,	spher	es and
CLO_13	Students wi	ll be able to	solve basic	heat transfer problems involvi	ng for	ced co	onvect	ion ins	ide circular and n	on-circular d	ucts.		
CLO_14	Students w	vill be able to	o define nat	ural convection.									
CLO_15	Students wi horizontal c	II be able to ylinders and	solve basio spheres.	heat transfer problems involvi	ng na	tural c	onvec	tion ov	ver vertical plates,	inclined plat	es, horizontal plates, ve	rtical c	ylinders,
CLO_16	Students wi	II be able to	define ther	mal radiation, irradiation, radio	sity, s	oectra	l and t	otal he	emispherical emm	iisivity, transı	missivity, absorptivity, ar	nd refle	ectivity.
CLO_17	Students wi	II be able to	define the	black body and the gray body.									
CLO_18	Students wi	II be able to	calculate b	asic radiation heat transfer pro	oblem	s betw	een g	ray su	rfaces.				
CLO_19	Students wi	II be able to	conduct an	d analyze experiments in heat	transf	er dor	nain.						

						COURSE SYLLAE	BUS							Ν	NEP361	_01_Fall_2007	Page - 1
Code:	MEP36	61	Name	•:	Thermodyna	amics II								Тур	e:	Requi	ed
Number o	f Credit	:	4	ł	Section:	01 S	emester:			F	all	Year:	2007	Nu	mber of	students:	20
Course Catalog Description	Irrever: Therm	sibility odyna	/ and a amics (availat of high	bility(exergy) h- speed gas	, Thermodynamic relation	ns, Mixtur	es and	l solut	ions, C	Chemic	al reactions	and com	hbustior	n, Phase	and chemical e	uilibrium,
Prerequis	ite:	MEP 2	261 : T	Therm	odynamics- I	I (4 :3,1); MEP 290 :Flui	d Mechar	nics(4	:,3,1)								
Textbook	. /	Autho	ors:	Cenge	əl, Y. A., and	Boles, M. A.,		Nam	e:	Therr	nodyna	amics: An Er	ngineerir	ng Appr	oach		
TEXIDOON.	F	Publis	her:	McGra	aw-Hill	Edition:	6th Ed.	Place	e:		NY	Year:		2002	ISBN	: 0071	121773
Other Req Materials:	luired	1	0														
						Course Topic	s [Suppc	orted C	CLO's	[Supp	oorted	PO's]					
T1:Exergy[1]][e]																
T2:Property 1	relations[2	2][a, e,	g]														
T3:Mixtures[[3][c]																
T4:A/C Proce	esses[4][c	c, g, k]															
T5:Chemical	reactions	and eq	luilibriu	.m[5][c	2, f, g, k]												
T6:High velo	city gas f	low[6]	[a, k]														
	_																
Supp.Prog	gram Ou	utcon	nes (A	ve.Re	l:Repitition): a(3.0:2), c(2.7:3), e(2.5	5:2), f(2.0:1), g(2.0):3), k(´	1.7:3)	•						•
Performa	ance Ta	rget f	or Co	urse l	Learning	Contributio	on of cou	irse:				Class/La	boratory	y Sche	dule:	Lecture:	Lab:
	Objectiv	ves A	ssess	sment	:	Math & Basic Sciences:	0	%	0.0	hrs.	Numb	er of Sessio	ns per w	eek:		3	1
At leas	st score:	:	No.	of stud	dents, %:	Engineering Sciences:	67	%	2.7	hrs.	Durati	ion of each	session,	min.:		50	120
Direct, %	InDirect	t(1-5)	Dire	əct	InDirect F	Engineering Design:	33	%	1.3	hrs.	Ins	structor nam	ne:		Dr. S	amir Elsayed Aly	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	reparation: 05/02/2008					
			COURSE	SYLLABUS (Course Learning	ng Ob	jectiv	res)			MEP361_01_Fall_20	007	Page - 2			
CLO_1	Student car	n apply such	concept in	the analysis of thermodynamic	: syste	ms									
CLO_2	Student car	n identify, ch	loose, and a	apply the proper property relation that works within the available data for the given process.											
CLO_3	Student car	n describe, i	dentify the p	hase, determine the properties	s and a	apply	therm	odynai	mic laws to multi- components	systems.					
CLO_4	Student car	n apply the o	conservation	laws for various air-conditioni	ng pro	cesse	s								
CLO_5	Student car	n apply therr	modynamic I	aws on systems where various	s fuel a	aspec	ts of fu	uel cor	nbustion processes are encou	intered.					
CLO_6	Student car flows	n define and	describe th	e basic features for the compre	essible	e flow	and ca	an dete	ermine the expected property	variations associated wi	th high	speed			

							COURSE SYLLABU	S							MEP3	65_01_F	⁻ all_2007	Page - 1
Code:	MEP3	365	Name	: -	Thermal Eng	gineer	ing Measurements								Туре:		Require	d
Number of	Credi	t:	3		Section:		01 Se	nester:			F	all Yea	ar:	2007	Number	of stude	ents:	12
Course Catalog Description	Introd veloci	uction ty, flov	s on th w visua	ne use alizatio	of compute on), Torque,	rs on Spee	the Lab., Error analys d, Power Measureme	sis, Tem n	perat	ur mea	asurem	nent, Press	sure measu	rement,	Flow meas	suremen	nt (Mass flow	rate,
Prerequisi	te:	MEP :	261 Th	nermoo	dynamics I, I	MEP	290 Fluid Mechanics											
Toythook		Autho	ors:	1. R. S	6. Figliola an	nd D. I	E. Beasley		Nam	ie:	Theo	ry and De	sign of Mea	suremer	nts System	S		
TEXIDOOK.		Publis	sher:	John V	Viley & Sons	S	Edition: 4	th Ed.	Plac	e:		NY	Year:	20	006 ISE	BN:	978-0-471	-44593-7
Other Req Materials:	uired		Lab m	anuals	s are purcha	ised a	t College Copy cente	r										
							Course Topics	[Suppo	orted	CLO's][Supj	oorted PO)'s]					
T1:Basic syste	ems of N	Measure	ements s	systems	and													
T2:Probability	y & stati	istics[C	LO_2][a, b, c,	n, o]													
13:Error, unco	ertainty	analysi	s and pr	esentati	on													
T4:Temperatu	ure meas	suremen	nts[CLO	_5 , CL	O_6][a, b, e, k	, o]												
T5:Technical	report w	vriting[CLO_13	3][a, b,	c, e, k, o]													
T6:Pressure n	neasuren	nents[C	CLO_7,	CLO_8	5][a, b, c, e, k, o	o]												
T7:Flow meas	suremen	ts[CLO	_9 , CL	O_10][a	a, b, e, i, k, o]													
T8:Force, Tor	rque, Spo	eed, & I	Power M	Aeasure	ments[CLO_1]	1][a, e,	k, o]											
T9:Introduction	on to Da	ita Acqu	uisition S	Systems	s[CLO_12][a, i	i, k]												
Supp.Prog	jram O	utcon	nes (A	ve.Re	I:Repitition):	a(2.1:12), b(1.8:5), c(1.5	4), e(2.1	:10), f	(1.0:1),	h(1.0:1)), i(1.7:3), k	(1.8:8), n(2.0	1), o(1.6:	10)			
Performa	ince Ta	arget	for Co	urse L	earning		Contributior	of cou	rse:			(Class/Labo	ratory S	chedule:		Lecture:	Lab:
(Object	ives A	ssess	sment:	: 1	Math	& Basic Sciences:	0	%	0.0	hrs.	Number o	of Sessions	per wee	k:		3	1
At leas	st score	e:	No.	of stud	dents, %:	Engin	eering Sciences:	67	%	2.0	hrs.	Duration	of each sea	sion, m	in.:		50	120
Direct, %	InDirec	ct(1-5)	Dire	ect	InDirect	Engin	eering Design:	33	%	1.0	hrs.	Instru	ctor name:		Pr	of. Oma	r Al-Rabghi	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	17/	/03/2008
			COURSE	E SYLLABUS (Course Learni	ng Ob	jectiv	/es)			MEP365_01_Fall_2	007	Page - 2
CLO_1	explain gen	eral measur	rement syste	em, calibration and standards								
CLO_2	apply statis	tical analysis	s, regressio	n analysis and data reduction	techn	iques	on a g	jiven d	lata set			
CLO_3	apply uncer	rtainty analy	sis on a me	asurement system								
CLO_4	calculate the uncertainty due to error propagation											
CLO_5	Describe temperature measurements techniques as well as to explain their physical principals											
CLO_6	Conduct ca	libration exp	periments of	thermocouple, RTD and therr	nistor,	as we	ell as t	o anal	yze and interpret data,			
CLO_7	Describe pr	ressure mea	surements	techniques as well as to explai	n thei	r phys	ical pr	incipa	s			
CLO_8	Conduct ex	periment rel	lated with p	ressure measurement,								
CLO_9	Describe flo	ow measure	ments techr	niques as well as to explain the	ir phy	sical p	orincip	als.				
CLO_10	Conduct an	n experiment	related witl	n calibration of flow measuring	g devid	es						
CLO_11	Describe fo	orce, torque a	and power r	neasurements techniques as v	vell as	to ex	plain t	heir pł	nysical principals			
CLO_12	Describe da	ata acquisitio	on system (l	both plug-in and stand alone ty	/pes),	Hand	out +	lab. vi	sit			
CLO_13	Apply techr	nical report v	vriting skills	when preparing lab reports								

							COURSE SYLLAB	US								ME	EP370_01	_Fall_2007	Page - 1
Code:	MEP3	370	Name	:	Internal Cor	nbust	ion Engines									Туре	:	Require	ed
Number of	f Credi	t:	4	Ļ	Section:		01 S e	emester	:			Fa	all Ye	ar:	2007	Num	ber of stu	idents:	24
Course Catalog Description	Spark workir Comb	ignition ng fluio fluion	on and ds and t cham	l comp l engin Iber de	pression igni ne cycles. G esign and oo	tion e as exc ctane	ngine types, design a change processes ar number. Diesel fuel i	and oper nd volum njection	ating etric , supe	g para effici ercha	ame ienc argir	ters; t y. Car ng of 4	hermo ch buretors I-stroke a	nemistry of fu and electror and 2-stroke	iel-air m nic fuel i S.I. and	ixture njection C.I. ei	and therm n. Perforn ngines.	nodynamic moo nance paramet	lels of ers.
Prerequisi	ite:	Math.	102E	Gene	ral Mathema	atics II	, Phys. 101E Physic	sl											
Toxtbook:		Autho	ors:	J. B. H	Heywood				Nai	me:		Funda	amentals	of Internal C	Combust	ion En	gines		
TEXIDOOK.		Publis	sher:	McGra	aw-Hill		Edition:	Intl. Ed.	Pla	ace:			NY	Year:	1	988	ISBN:	00711	15668
Other Req Materials:	uired		Lab m	anual	s are purcha	ased a	at College Copy Sho	0											
							Course Topic	s [Supp	orted		0's]	[Supp	orted PC)'s]					
T1: Introduct	ion, Eng	ine Typ	bes and t	their Op	peration [1, 2]	[a, e, k]													
T2:Engine De	esign and	d Opera	ting Par	rameter	s[3, 4, 5][a, b,	e, l]													
T3:Thermo-c	hemistry	of Fue	l-Air M	ixture[6	6, 7][a, l, m]														
T4:Properties	s of Worl	king Flu	uids[8][a	a, b, e]															
T5:Ideal Mod	lels of E	ngine C	ycles[9,	, 10, 11	, 12][a, b, e]														
T6:Gas Exch	ange pro	cess[13	8, 14, 15	, 16][a,	, c, e, k]														
T7:SI Engine	Fuel Me	etering	& Mani	fold Ph	enomena[17][a, c, k]													
T8:Engine Oj	perating	Charac	teristics	[18, 19	, 20, 21, 22, 23	3, 24, 2	5][a, b, c, d, e, k]												
Supp.Prog	gram O	utcor	nes (A	ve.Re	el:Repititior	n):	a(1.8:25), b(2.0:5), c(1.	0:5), d(2.0):2), e	e(1.7:9	9), k	(1.8:5),	l(2.0:3), n	n(1.0:1)					
Performa	ance Ta	arget	for Co	urse l	Learning		Contributio	on of cou	urse:					Class/Labo	ratory S	Schedu	ule:	Lecture:	Lab:
	Object	ives A	ssess	sment		Math	& Basic Sciences:	0	%	6 C	0.0	hrs.	Number	of Sessions	per wee	ek:		3	1
At leas	st score	: :	No.	of stu	dents, %:	Engin	eering Sciences:	67	%	6 2	2.7	hrs.	Duration	of each se	ssion, m	in.:		50	120
Direct, %	InDirec	ct(1-5)	Dire	ect	InDirect	Engin	eering Design:	33	%	6 1	1.3	hrs.	Instru	ctor name:		D	r. Nazrul	Islam Abdulhaf	iz

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of pr	Date of preparation: 06/02/2008						
			COURSE	E SYLLABUS (Course Learni	ng Ot	jectiv	'es)			MEP370_01_Fall_2	.007	Page - 2				
CLO_1	ability to cla	assify power	machines t	by their basic operational princi	ples a	ind ge	neral (design	features	•						
CLO_2	ability to re-	cognize and	define basi	c elements and subsystems of	an IC	Engir	ne with	their f	functions							
CLO_3	ability to rec TC, BC etc	cognize and and carry o	define oper out basic ma	ational modes of a piston-pisto athematical analysis.	on rod∙	-crank	mech	anism	, some related parameters	such as compression ratio	, some	volumes,				
CLO_4	ability to kn	low the mear	ning and sig	inificance of some parameters	which	are v	ery im	portan	t in determining performan	e of an engine						
CLO_5	ability to ca design con	Iculate powe siderations c	er and efficie	encies of an engine with differe erformance.	nt inp	ut valu	les av	ailable	and to see the effect of the	se parameters and also s	ome m	inor				
CLO_6	able to carr	y out some e	elementary	analysis on combustion chemi	stry ar	nd ass	ociate	d effec	ct on engine performance t	rough the combustion eff	ciency					
CLO_7	able to reco	ognize fuel ty	ypes and dis	stinguish their typical effects or	ı engir	ne per	forma	nce								
CLO_8	able to know burned gas	w about diffe	erent models	s of thermodynamic properties	and a	lso be	able f	to reac	these properties from the	modynamic charts for unb	urned a	and				
CLO_9	able to calc	culate perform	mance of ide	eal thermodynamic cycles and	comp	are th	em									
CLO_10	able to real	ize the impo	rtance of cy	cle approximations as enginee	ring a	pproa	ches,	assum	ptions included and their e	fect on the performance of	alculati	ion				
CLO_11	able to real	lize elements	s of an actua	al cycle and difference betweer	n it an	d idea	I and :	approx	imated cycles.							
CLO_12	able to reco design and	ognize and d adjustment	lefine impor	tant points of a real cycle proce	∍ss an	d also	to ge	t some	e knowledge about how a g	bod engine performance is	s achiev	ved by				
CLO_13	able to deserve	cribe effect of of a 2-strok	of atmosphe	ric and operational conditions	and de	əsign r	proper	rties or	n volumetric efficiency of a	4-stroke engine and on so	avengi	ing				
CLO_14	able to ana	lyze and cor	npare effect	t of varying conditions on engir	ie per	formar	nce via	a volur	netric efficiency.							
CLO_15	able to reco	ognize and d	listinguish b	etween supercharging systems	s and '	their p	erforn	nance,	and effect of superchargin	g on engine performance.						
CLO_16	able to carr	y out elemer	ntary calcula	ations on turbochargers and cc	ontribu	tion of	f them	on en	gine performance.							
CLO_17	able to knov performanc	w about SI e ce and also s	engine mixtu some expos	ire requirements, compare and ure of fuel-injection systems.	distin	guish	betwe	en the	e different fuel metering sys	ems and their effect on e	ngine					
CLO_18	able to dem	nonstrate en	gine charac	teristics (torque, power and sfc	:) agai	nst sp	eed a	nd ma	ke general comments abou	t them						
CLO_19	able to des	cribe the mo	st importan	t combustion concepts and pro	blems	in co	ncern	with S	I engines and CI engines.							
CLO_20	able to anal engine perf	lyze effect of formance an	f combustio d diesel kno	n chamber design features and ock.	י othe ל	r engir	ne par	amete	rs on the SI engine perforn	ance and detonation and	also on	the CI				
CLO_21	able to defi	ne two-strok	e engine de	sign features and their differer	ices fr	om fo	ur-strc	ke on	es.							
CLO_22	able to carr	y out two-str	roke engine	performance calculations.												
CLO_23	able to reco	ognize main	and suppler	mentary elements of SI and CI	engin	es and	d defir	ie ope	rational principles.							
CLO_24	able to ana	lyze energy	distribution	in an internal combustion engin	ne											

						COURSE SYLLA	BUS							MEP39	0_01_Fall_2007	Page - 1
Code:	MEP3	390	Name	: Summe	r Training	J								Туре:	Require	əd
Number of	f Credi	t:	2	· Sectio	1:	01 5	Semester	:		F	all	Year:	2007	Number o	f students:	24
Course Catalog Description	Trainir any ot	ng in t ther re	he ind quiren	ustry under th	e supervis aned by th	sion of a staff memb le department.	ber. Stude	nts ha	ive to s	submit	a repo	ort about the	ir acheivem	ients during	the training in add	ition to
Prerequisi	ite:	Comp	letion	of 120 credit	nours of c	ourse work										
Taxtbook:		Autho	ors:	0				Nam	1e:	0						
	1	Publis	sher:	0		Edition:	0	Plac	;e:		0	Year:		0 ISB	N:	0
Other Req Materials:	uired		None	_				_	_	_	_					
		<u> </u>				Course Topi	cs [Suppo	orted (CLO's][Supp	oorted	l PO's]				
T1:To enhanc	ce the stu	ıdent's	enginee	ring skills exper	ience and pr	ovide exposure to real l	life engineeri	ng prof	fessiona	l practic	es befo	re graduation[1	, 2, 3, 4, 5, 6,	7][f, h, j, o]		
T2:Applicatio	on of con	nmunic	ation sk	tills[8, 9][g]												
									\bot							
									\bot							
 									\downarrow							
									<u> </u>							
 									—							
 									—							
					··· \	f(2, 2, 2) = a(2, 0, 2) = b(2)	0.0) 1/2 0.1	<u>) () (</u>	D-1)							
Supp.Prog	Jram O	utcon	nes (A	ve.Rel:Repit	ition):	I(2.3:3), y(3.0:2), II(3.0	0:2), j(3.0:1)	1, 0(2.0):1)	<u> </u>			·			T
Performa	Ince Ta Objecti	arget f	for Co	urse Learnin	g Moth		ion of cou				Num		boratory 5	Schedule:	Lecture:	
			No	of students (100	<u>%</u>	0.0	nrs.	Duro	ber of bessio	ins per wee	ек: :	5 490	0
Direct. %		;. ct(1-5)	Dire	ect InDire	ct Engi	neering Design:	0	%	2.0	hrs.	In	structor nan	ne:	Dr.	400 Mansoor Siddique	0

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	18	/02/2008
			COURSE	SYLLABUS (Course Learni	ng Ob	jectiv	ves)			MEP390_01_Fall_20	007	Page - 2
CLO_1	Students w	ill be abe to	identify corp	porate organizational and adm	inistrat	ive st	ructure	e				
CLO_2	Students w	ill be able to	recognize t	he value of work, time, and tea	amwor	k						
CLO_3	Students w	ill be able to	describe pr	ofessional attitudes and practi	ces							
CLO_4	Students w	ill be able to	relate the i	mpact of engineering solutions	on so	ciety						
CLO_5	Students w	ill able to dis	scuss contei	mporary issues								
CLO_6	Students w	ill be able to	discuss the	interrelation between theories	s studio	ed and	d real	engine	ering examples			
CLO_7	Students w	ill be able to	describe pr	ofessional experiences of wor	king b	oth in	the the	ermal	and mechanical systems areas	S		
CLO_8	Student will	l be able to a	apply techni	cal report writing skills								
CLO_9	Students w	ill be able to	apply oral a	and visual presentations skills								

						COURSE SYLLAB	US							MEP451	_01_Fall_2007	Page - 1
Code:	MEP4	451	Name	Refrigera	ion & A	Air Conditioing I								Туре:	Require	эd
Number of	i Credi	it:	3	Section:		01 S r	emester:			Fa	all	Year:	2007	Number of	students:	16
Course Catalog Description	Revie Basic	w of b vapor	asic th comp	ermodynamics, ression equipme	vapor o ∋nt. Intr	compression cycles, r oduction to	multistage	e and	casca	de vap	oor cor	mpression ref	rigeration.	Refrigerants	and their charach	iterstics.
Prerequisi	te:	MEP	261 Th	rmodynamics	I, MEP	360 Heat transfer										
Taxtbook		Autho	ors:	Mcquiston, Parl	er and	Spitler		Nam	e:	Heati	ing Ve	ntilating and	Air conditio	ning		
TEXIDUOR.		Publis	sher:	John Wiley & S	วทร	Edition:	6th Ed.	Plac	e:		NY	Year:	20	05 ISBN	: 0-471-4	47015-5
Other Req Materials:	uired		Lab ha cente	andouts are pur r	chased	from College Copy										
	Course Topics [Supported CLO's][Supported PO's]															
T1:Review of	í English	1 and SI	units.[1	1][a, o]												
T2:Review of refrigeration	basic va	apor con	mpressio	<u>on</u>					\Box							
13:Air colidit water.	10ning s	ystems	(All all,													
Give	etery and	a psych	romeure	? processes.												
T5:Solar angl	es and S	solar he	at gain[6	5, 7][a, e, o]												
T6:Thermal C	Comfort	and Ind	oor Air	Quality (IAQ)[8, 9][f, h, o]											
T7:Cooling L	oad Calo	culation	ıs[10, 11	1][c, i, k, o]												
T8:Refrigerar	nts[12][g	g, j, o]														
19:Deviation	from ide	eal vapo	or comp	ression												
110: Vapor co	mpressi	on refri	geration	í .												
T11:Absorpti	on refrig	geration	cycle[1	.7][o]					1							
Supp.Prog	jram O)utcor	nes (A	ve.Rel:Repititi	on):	a(2.0:4), b(2.3:4), c(2.0	:4), e(2.6:8	8), f(1.0):2), g(1	1.8:5), ł	h(1.0:2)), i(1.3:3), j(2.0:	1), k(2.0:5),	o(1.9:18)		
Performa	ance Ta	arget	for Co	urse Learning		Contributic	on of cou	rse:				Class/Lal	ooratory S	chedule:	Lecture:	Lab:
C	Objecti	ives A	ssess	sment:	Math	& Basic Sciences:	0	%	0.0	hrs.	Numb	ber of Sessior	ns per weel	k:	3	1
At leas	st score) :	No.	of students, %:	Engi	neering Sciences:	67	%	2.0	hrs.	Durat	tion of each s	session, mi	n.:	50	120
Direct, %	InDire	ct(1-5)	Dire	ect InDirect	Engi	neering Design:	33	%	1.0	hrs.	Ins	structor nam	e:	Prof.	Omar Al-Rabghi	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prep	paration:	20	/02/2008
			COURSE	E SYLLABUS (Course Learni	ng Ob	jectiv	ves)			MEP451_01_Fall_20	007	Page - 2
CLO_1	Be able to o	convert from	n SI system	of units to English units and vis	se ver	sa foi	[.] parai	neters	related to refrigeration & air	conditioning		
CLO_2	Be able to	solve and a	nalyze basi	c vapor compression refrigerat	ion cy	cle.						
CLO_3	Draw the ba	asic refrigera	ation cycle o	on T-s & P-h diagrams								
CLO_4	Define, dist	inguish and	sketch diffe	erent Air Conditioning (AC) sys	stems							
CLO_5	Be able to ι	use psychro	metric chart	, analyze simple Air conditionir	ng pro	cesse	s and	basic	AC cycles			
CLO_6	Be able to	define solar	r angles, an	d be able to estimate incident s	solar r	adiatio	on inte	nsity c	on a surface.			
CLO_7	Be able to	calculate he	eat gain due	to sunlit and shaded windows								
CLO_8	Be able to I	ist factors a	ffecting the	mal comfort in air conditioning	zones	6.						
CLO_9	Be able to ι	use ASHRA	E comfort c	hart, be able to calculate the re	quire	d outd	oor (fi	esh) q	uantity for an application			
CLO_10	Be able to o	calculate co	oling load d	ue to external loads for a build	ing us	ing the	e RTS	metho	od.			
CLO_11	Be able to o	calculate co	oling load d	ue to internal loads for a buildi	ng usi	ng the	RTS	metho	d			
CLO_12	Identify type	es of refrige	rants, their r	numbering system and safety g	Iroups							
CLO_13	Analyze no	on-ideal vap	or compress	sion refrigeration cycles, and d	raw th	em or	n T-s a	nd P-ł	n diagrams			
CLO_14	Identify diffe diagrams fo	erent multi-s or such syste	stage arrang ems.	ements and be able to compu	te the	coeffi	cient d	of perfo	ormance for each. In addition	to been able to draw T-s	and F	р-h
CLO_15	Ability to so	olve refrigera	ation cycle p	roblems using computer progra	am su	ch as	EES (Engin	eering Equation Solver)			
CLO_16	List differen	nt types of co	ompressors	, condensers, control valves ar	nd eva	porate	ors.					
	absorp	tion refrider	e single sta	ge H2U-								

						COURSE SYLL	ABUS								MEP460	0_01_Fa	all_2007	Page - 1
Code:	MEP4	60	Name	: /	Applied Hea	it Transfer									Туре:		Require	d
Number of	f Credit	t:	3	3 ;	Section:	01	Seme	ster:			F	all Year	: 20	007	Number o	fstude	nts:	16
Course Catalog Description	Heat e excha	exchar ingers	nger c . Liqui	lassific d to liq	ations, Hea luid heat exc	t transmission and fluid hangers. Boiling and d	d flow. T condens	herm ation	al ana heat t	alysis o transfe	of hea er. Co	t exchanger ndensers ar	s. Gas to ga d cooling to	is heat wers. <i>A</i>	exchanger	s. Gas t of heat	to liquid hea	ıt 5.
Prerequisi	ite:	MEP 3	360															
Toythook		Autho	ors:	Incrop	era F. P. an	d Dewitt D. P.			Name	e:	Fund	amentals of	Heat and M	ass Tr	ansfer			
TEXIDOUR.		Publis	her:	John V	Niley & Son	s Edition:	5th F	Ed.	Place	e:		NY	Year:	20	02 ISBN	1:	978-0-471	-45728-2
Other Required 2. Fundation of Decision of Energy Systems, Hodge D. R. and Future																		
T1:Review of	Course Topics [Supported CLO's][Supported PO's] T1:Review of engineering thermodynamics, heat transfer and fluid mechanics principles.[CLO_1][a, e]																	
T2:Classifica	tion of di	ifferent	types of	of heat e	xchangers[CL(D_2][a, c]												
T3:The LMT	D and ef	fectiver	ness e-N	JTU met	thod for heat e	xchanger sizing and analysi	is (Type-I	& Tyr	pe II pro	oblems)	.[CLO	_3, CLO_4][a	a, c, e]					
T4:The therm	nal sizing	g & ratii	ng of sh	ell and t	tube (STHX) h	neat exchangers.[CLO_5, C	CLO_6][a,	, c, e]										
T5:The therm	nal rating	g of sim	ple cros	s flow h	neat exchanger	s (CFHX).[CLO_7][a, e]												
T6:The therm	nal rating	g of com	pact he	eat excha	angers, for both	h gas-liquid and gas-gas ser	rvice.[CL0	D_8][a	ı, e]									
T7:Boiling ar	nd conder	nsation	heat tra	ansfer[C	LO_9 , CLO_	10][a, c, e]												
T8:Developir	ng Comm	nunicati	on skill	s[CLO_	_11][g]				_									
T9:Heat trans	sfer expe	riments	[CLO_	12][a, b]	.]				_		_							
Supp.Proç	gram O	utcon	nes (A	ve.Re	I:Repitition	a(3.0:11), b(2.0:1),	c(2.8:5),	e(2.9:	9), g(3	.0:1)								
Performa	ance Ta	arget f	for Co	ourse L	_earning	Contrib	ution of	i cour	rse:		-	Cl	ass/Labora	tory S	chedule:		Lecture:	Lab:
	Objecti	ives A	ssess	sment:	:	Math & Basic Sciences	s:	0	%	0.0	hrs.	Number of	Sessions pe	er wee	k:		2	1
At leas	st score):	No.	of stuc	dents, %:	Engineering Sciences:	:	50	%	1.5	hrs.	Duration of	each sessi	on, mi	n.:		80	80
Direct, %	InDirec	ct(1-5)	Dire	ect	InDirect	Engineering Design:		50	%	1.5	hrs.	Instruct	or name:		Dr. I	Mansoo	or Siddique	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	18/	/02/2008		
			COURSE	SYLLABUS (Course Learni	ng Ob	jectiv	ves)			MEP460_01_Fall_2	007	Page - 2		
CLO_1	Students w	ill be able to	conduct en	ergy balances & choose the ap	opropr	iate N	u # ar	nd f fao	tor correlations.					
CLO_2	Students w	ill be able to	discribe co	mmon heat exchanger types, t	heir a	oplicat	tions a	ind TE	MA classifications					
CLO_3	Students w	ill be able to	calculate th	e overall heat transfer coefficie	ent for	plain,	, finne	d and	fouled surfaces.					
CLO_4	Students will be able to apply the LMTD and e-NTU methods for sizing & rating of different types of heat exchangers.													
CLO_5	Students w	Students will be able to size and rate double pipe heat exchangers												
CLO_6	Students w	ill be able to	apply Kern'	s Method for sizing shell and t	ube h	eat ex	chang	ers.						
CLO_7	Students w	ill be able to	rate simple	CFHX.										
CLO_8	Students w	ill be able to	rate compa	ct heat exchangers.										
CLO_9	Students w	ill be able to	describe th	e physical mechanism of differ	ent bo	oiling a	and co	ndens	ation modes and working of co	ooling towers				
CLO_10	Students w	ill be able to	choose & a	pply the appropriate (pool or f	low &	critica	al heat	flux) b	ooiling & condensation heat tra	insfer correlations.				
CLO_11	Students w	ill be able to	apply com	nunication skills										
CLO_12	Students w	ill be able to	conduct an	d analyse heat transfer experii	nents									

						COURSE SYLI	LABUS								MEP473_	01_Spring_2	007	Page - 1
Code:	MEP4	173	Name	: :	POWER PL	ANTS									Туре:	Re	quire	;d
Number o'	f Credi	it:	3	3 :	Section:	01	Seme	ester:			Spr	ring Y	'ear:	2007	Number of	students:		29
Course Catalog Description	Energ gener;	y dem ator a	iand ai nalysis	nd pov 3. Stea	ver generat im turbines	ion systems. Steam ar and their controls. Die	nd gas p sel engi	ower ne an	cycle: d gas	s. Fue turbin	s and e powe	combus er plants	stion. Basic a s. Overall pla	and auxilia ant perforn	ry systems nance. Ecor	of a steam p. nomics of pov). Ste er pla	am ants.
Prerequisi	ite:	MEP	360, N	1EP 36	51													
Taythook	_	Autho	ors:	P.,K.,I	Nag				Nam	e:	Powe	r Plant E	Engineering					
lextbook.	ſ	Publis	sher:	McGra	aw Hill	Edition:	(0	Place	e:	1	0	Year:	19	98 ISBN	l: 978	-007	4632918
Other Required Materials: Course Topics [Supported CLO's][Supported PO's]																		
	Course Topics [Supported CLO's][Supported PO's]																	
T1:Energy ge	eneration	metho	ds and th	he globa	al energy situa	tion [1][a, d, e, f, h, j, n]				T13:D	irect con	ntact and s	surface cond. C	Cooling towe	ers[13][a, d, e,	1]		
T2:Forecastir	ng, Load	and loa	ıd durati	ion curv	ves[2, 3, 4][a,	e, h, k]				T14:D	escribe	and explai	ain the different	t plant syster	ns [14, 15][a,	c, d, e, i, l]		
T3:Power pla	int econo	omics[4	, 5, 6][a	l, c, e, k	.]					T15:Ir	icorpora	ite and abb	breviate the int	errelation be	etween differer	nt systems and p	ant pe	rformance.
T4:Mass and	energy b	valance	of stean	n power	r plants[4, 5][a	a, c, e, k]				Polluti	on issue	es[15][a, c	c, d, e, 1, l]					
T5:analysis o	f steam c	cycle co	mponer	nts and	the integrated	cycle[5][a, c]												
T6:Fuels, cor	nbustion	calcula	ations, sp	pecific	fuel consumpt	ion [6, 7][a]												
T7:Combusti	on calcul	lations[7][a]															
T8:Parametri	c effect c	of fuels	on plan	t perfor	mance[7, 8][a	, 1]												
T9:Steam ger	nerators,	Types,	compor	nents[9]	[a, c]													
T10:Water tu	be boiler	r compo	onents []	10][a, c.	, d, e, l, m]													
T11:Steam fl	ow throu	igh noz	zles[11]	[c, d]														
Supp.Proç	yram O	utcon	nes (A	ve.Re	:Repititior	ı): a(3.0:13), c(2.3:6),	, d(2.9:7),	, e(2.8:	:8), f(3	.0:1), h	(2.7:3),	i(3.0:1), j	j(3.0:1), k(2.0:	2), I(3.0:6),	m(2.0:1), n(2	.0:1)		
Performa	ance Ta	arget (for Co	ourse l	Learning	Contrib	oution o	of cou	rse:	-	_		Class/Lab	oratory S	chedule:	Lect	ıre:	Lab:
	Objecti	ives A	lssess	sment	:	Math & Basic Science	es:	0	%	0.0	hrs.	Number	er of Session	s per weel	k:	3		1
At leas	st score) :	No.	of stud	dents, %:	Engineering Sciences	3:	60	%	1.8	hrs.	Duration	on of each se	ession, mi	n.:	50	,	80
Direct, %	InDire	ct(1-5)	Dire	ect	InDirect	Engineering Design:	-	40	%	1.2	hrs.	Instr	ructor name):	I	Dr. Galal Zak		

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of p	reparation:	18	/02/2007
			COURSE	SYLLABUS (Course Learning	ng Ob	jectiv	ves)			MEP473_01_Spring	_2007	Page - 2
CLO_1	Provide the contempora	students wi ary issues)	ith understa	nding to appraise the different	energ	y gene	eratior	meth	ods and the global energy	situation (consumption, av	ailabilit	y and
CLO_2	Ability to a	oply forecati	ing and inter	prete the load curves variation	s and	powe	r netw	ork.				
CLO_3	Appreciate	energy ecor	nomic calcu	ations.								
CLO_4	apply the ba	asic thermod	dynamics ar	nd fluid flow principles to perfor	m							
CLO_5	analysis of	steam powe	er compone	nts and the integrated cycle.								
CLO_6	Distinguish	between typ	pes of fuels,									
CLO_7	Perform co	mbustion ca	alculations f	or boiler furnaces								
CLO_8	Explain the	parametric	effect on pla	ant performance.								
CLO_9	Identify the	different typ	es of steam	generators and the function o	f the c	ompo	nents.					
CLO_10	Design, wa	ter tube boi	ler compone	ents (furnace, water walls, S/H	A/H a	and ec	conom	izer) L	Ise of software is allowed,	Power point presentation i	s requir	ed
CLO_11	Compare th	e performar	nce of differ	ent turbine stages.								
CLO_12	Design cal	culations of	a single sta	ge (if time allows)								
CLO_13	Describe th	e purpose, o	construction	and operation of different con-	dense	rs and	d cooli	ng tow	ers. Solve Thermal calcu	ations		
CLO_14	Describe ar	nd explain th	he different	plant systems (air, exhaust, fu	el, sta	rting,						
CLO_15	Incorporate	and interpr	ret the interr	elation between different syste	ms ar	nd plai	nt perf	orman	ce. Pollution issues			

						COURSE SYLLAB	US							MEP474_0	01_Spring_2007	Page - 1
Code:	MEP4	474	Name	: Tur	rbo-machin	ery ang Gas Turbines								Туре:	Requi	red
Number of	f Credi	it:	3	3 Sec	ction:	01 5	emester:			Spi	ring Year:	20	07	Number of	students:	16
Course Catalog Description	Fluid gas tu	mecha urbine	anics a engine	ind energ	jy transfer i rcraft engin	n turbo machines. Centr ies.	ifugal and	d axial	comp	ressor	s. Centrifugal a	nd axial	flow tu	rbines. Appl	lications includin	j industrial
Prerequisi	ite:	MEP	360 He	eat Trans	sfer , MEP :	361: Thermodynamics II										
Taythaaku		Autho	ors:	Saravana	amuttoo, G	. Rogers, H. Cohen		Nam	e:	Gas 1	Furbine Theory					
Textbook:		Publis	sher:	Prentice I	Hall	Edition:	5th	Place	e:		0 Ye a	ır:	20	01 ISBN	: 978-01	30158475
Other Req Materials:	luired		0			Course Tonic	orted PO's]									
	UCTION	J[1_2][aefh				<u>s [ouppo</u>			լլօսիլ						
T2:SHAFT P	OWER	CYCLE	ES[3, 4,	5 6][a, c, d	de.f.g.h]											
T3:Gas Turbi	ine for A	ir Craft	Propuls	$\frac{5, 0}{12, 2, 2}$	$\frac{1}{2}$ $\frac{1}$											
T4:Centrifug	al Comp	ressors[10, 11][[a, c, d, e, f	f, g, o]	61										
T5:Axial Flo	w compi	ressor[1	2, 13][a	ı, c, d, e, f, ş	g, o]											
T6:Combusti	on Syste	em[14, 1	[5][a, c,	e, h, j, l]												
T7:AXIAL F	LOW T	URBIN	ES[16, 1	17][a, c, d,	, e, f, g, o]				1							
Supp.Proç	gram C	Outcor	nes (A	ve.Rel:R	Repitition):	a(2.4:14), c(3.0:11), d(3	3.0:6), e(3.	0:16), 1	f(2.8:6),	g(3.0:6	5), h(2.0:3), j(2.0:2	, I(2.0:1),	o(3.0:	3)		-
Performa	ance Ta	arget	for Co	urse Lea	arning	Contributio	n of cou	rse:			Class/	Laborat	ory S	chedule:	Lecture:	Lab:
	Object	ives A	ssess	sment:	М	lath & Basic Sciences:	0	%	0.0	hrs.	Number of Ses	sions pe	r weel	C:	3	1
At leas	st score	e:	No.	of studen	nts, %: Er	ngineering Sciences:	87	%	2.6	hrs.	Duration of eac	ch sessio	on, mii	า.:	50	80
Direct, %	InDire	ct(1-5)	Dire	ect Ir	InDirect Er	ngineering Design:	13	%	0.4	hrs.	Instructor n	ame:		Dr.	Majed AlHazmy	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	18/	/02/2007
			COURSI	E SYLLABUS (Course Learni	ng Ob	jectiv	es)			MEP474_01_Spring_	2007	Page - 2
CLO_1	Recognize	the different	gas turbine	e arrangements, their advantag	es an	d disad	dvanta	ages a	nd different applications applic	ation.		
CLO_2	Realizing th	ne relation b	etween gas	turbine design, application and	d envii	onmei	nt.					
CLO_3	Applying the	e basic theri	modynamic	and heat transfer principles in	perfor	mance	e calc	ulation	of industrial gas turbines.			
CLO_4	Recognizin	g the differe	nces of a re	eal cycle (from the theoretical o	nes)							
CLO_5	Carry out p	erformance	calculations	s of real GT systems								
CLO_6	Examine th	e effect of v	arious desię	on parameters on the GT perfo	rmanc	e (pre	ssure	ratio, t	temperature ratio, pressure dro	op, polytropic efficiency	etc).	
CLO_7	Recognize	the difference	ces betweer	n A/C engines and Power GT	comp	onents	s and	operat	ion conditions)			
CLO_8	Identifying of	different A/C	cengine cor	nfigurations								
CLO_9	Carry perfo	rmance calc	culations of	different A/C engines configura	ition.							
CLO_10	Identify the	characterist	tics the cent	trifugal compressors and their a	applica	ations.						
CLO_11	Carry out fu	ull Design ar	nd performa	nce calculations of centrifugal	compr	essors	6.					
CLO_12	Identify the	characterist	tics the axia	I flow compressors and their a	oplicat	ions.						
CLO_13	Carry out fu	ull Design ar	nd performa	nce calculations of axial flow c	ompre	ssors.						
CLO_14	Identify diffe	erent types o	of combusti	on systems and their method o	f oper	ation						
CLO_15	Explain the	different typ	pes of fuel a	nd their environmental impact								
CLO_16	Identify the	characterist	tics the radia	al flow and axial flow turbines a	and the	eir app	licatio	ons.				
CLO_17	Carry out fu	ull Design ar	nd performa	nce calculations of axial flow tu	Irbines	5						

						COURSE SYLLA	BUS							MEP481	1_01_Fall_2007	Page - 1
Code:	MEP₄	181	Name	: Therma	Desalina	ation Processes								Туре:	Compuls	sary
Number of	i Credi	it:	3	Section	:	01	Semeste	r:		F	all	Year:	2007	Number o	f students:	31
Course Catalog Description	Phase Desal	e Rule	and Eo	quilibria, The	nodynan al and T	nics and Colligative hermo-Vapor Com	Propertie pression S	is, Scal }ystem	les and s, Dual	d Chen I Purpo	nical Tr	reatment, Mul ints.	ti-Effect D	Desalination	Systems, Multi Sta	age Flash
Prerequisi	te:	MEF	, 360 ⊢	leat Transfer	MEP 36 ⁻	1 Thermodynamics	II,									
Textbook		Autho	ors: I	M.A. Darwish	A. El-Sa	yed, M. El-Sayed,	S.E. Aly	Nam	ie:	Engir	neering	Systems for	Desalinati	ion		
TEXIDUOR.		Publis	sher:	King AbduAla	ziz Univ.	Edition:	1st Ed.	Plac	e:	, ,	Jeddah	Year:	19	995 ISBN	1: 000	0000
Other Req Materials:	uired		Hando	out materials a	nd Lectu	re notes										
	Course Topics [Supported CLO's][Supported PO's]															
T1:Introduction	on to De	esalinati	lon - Wa	ter needs and re	ources, De	salination in KSA and 1	the Gulf stat	.es[1][a,	1]							
T2:Chemical	Thermo	dynami	.cs and C	Colligative Prope	ties of Salf	water Solutions, Scale	Deposition	and Prev	ention.[[2, 3][a,	1]					
T3:Theory an	d Analy	ses of S	single an	d Multiple Effe	s Submerg	ged tube, Distillation (N	MED) Syste	ms.[4][a	, e, o]							
T4:Theory an	d Analy	ses of N	Aultiple	Effect Vertical t	be falling	film evaporators Syster	ms.[5][a, e, o	ɔ]								
T5:Theory an	d Analy	ses of s	ingle eff	iect Vapor Com	ression Dis	tillation (VCD) System	1s.[6][a, e, o]								
T6:Theory an	d Analy	ses of n	nultieffe	cts Vapor Comp	ession Dis	tillation (VCD) System	ıs.[6][a, e, o]								
T7:Theory an	d Analy	'ses of S	single an	nd Multi Stage o	ce through	Flash Distillation (MS	F) systems['	7][a, e, o	Ŋ							
T8:Theory an	d Analy	'ses of J	Multi St	age recirculatior	Flash Dist	Illation (MSF) systems	[8][a, e, o]									
T9:Dual Purp	ose Plar	it, thern	nal and e	economic analys	s.[9, 10][a	, e, o]										
T10:Other rel	lated top	ics and	desalina	ation systems[11	12, 13][d,	f, g, i, j]										
Supp.Prog	jram C	utcon	nes (A	ve.Rel:Repit	tion):	a(3.0:10), d(3.0:3), e	(3.0:7), f(3.	0:3), g(3	3.0:1), i((2.0:2),	j(3.0:2),	l(2.0:3), o(2.0:7	')			
Performa	ince T	arget	for Co	urse Learnir	3	Contribut	tion of co	urse:				Class/Lab	oratory S	chedule:	Lecture:	Lab:
(Object	ives A	lssess	ment:	Math	& Basic Sciences:	0	%	0.0	hrs.	Numbe	er of Sessions	s per wee	k:	3	1
At leas	st score	э:	No.	of students, ?	: Engir	neering Sciences:	67	, %	2.0	hrs.	Duratio	on of each se	ession, mi	n.:	50	120
Direct, %	InDire	ct(1-5)	Dire	ect InDire	t Engir	neering Design:	33	\$ %	1.0	hrs.	Inst	tructor name	:	Dr. Moł	nammad H. Albeiru	ıtty

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	04/05/2008		
	COURSE SYLLABUS (Course Learning Objectives)											Page - 2	
CLO_1	1 Students will be able to distinguish between sea, brackish and tap water and recognize the need for water in KSA and the GCC states												
CLO_2	C_2 Students will be able to recognize Colligative Properties of Saltwater Solutions such as boiling point elevation, freezing point depression, and vapor pressure												
CLO_3	-O_3 Students will be able to realize the importance of pretreatment and post-treatment processes in Desalination.												
CLO_4	_4 Students will be able to analyze single and multi-effects submerged tube evaporators' desalination processes.												
CLO_5	Students w	ill be able to	analyze mu	ulti-effects falling film evaporate	ors de	salina	tion pr	ocess	es.				
CLO_6	Students w	ill be able to	analyze sir	gle and multi-effects vapor cor	npres	sion d	listillati	on pro	ocesses VCD.				
CLO_7	Students w	ill be able to	analyze sir	igle and multi-stage once-throu	ıgh de	salina	ation p	rocess	es.				
CLO_8	Students w	ill be able to	analyze ree	circulated flash desalination pro	ocesse	es, MS	SF.						
CLO_9	Students w	ill be able to	understand	I the economic advantages of I	buildin	g Dua	al Purp	ose P	ants DPP.				
CLO_10	Students w	ill be able to	analyze DF	PP processes									
CLO_11	Student wil	l be able to v	work in tean	ns effectively									
CLO_12	Students w	ill be able to	conduct a s	scientific search on the internet	on di	fferen	t relate	ed sub	jects not included in above top	pic			
CLO_13	Students w	ill be able to	write a form	nal report and present it orally	n clas	s and	answ	er que	stions				

i <u> </u>	COURSE SYLLABUS												MEP499_01_Fall_2007		Page - 1	
Code:	MEP4§	99 N	lame:	: Senior Proj	ect								Туре:	Requir	ed	
Number of	f Credit:	:	4	Section:	01 5	semester:			F	all Year: 200		2007	Number of students:		13	
Course Catalog Description	Selection	on of t ion or f	:opic; l field st	iterature review; tudy (if any), data	project design planning a a processing. Analysis and	rranging fo t results. F	or data Prepar	a coller ration o	ction a of the f	ind expending first draft	rimental work, of final report	Interim . Prese	report. Ex ntation of t	perimental work an he project, Final reț	d data >ort.	
Prerequisi	ite: S	Studen	nts mu	st complete total	of 120 credit hours cours	es.										
Toythook	A	Author	rs: k	≺aragozoglu, Bał	naddin		Nam	e:	Guide	elines Fo	or Writing XE4	99 Seni	or Project	Reports		
TEXIDOOK.	P	Publish	ner: (College Copysho	p Edition:	1st	Plac	e:		0	Year:	20	03 IS B	N:	0	
Other Req Materials:	uired	A	۱. Stra	tegies for Creativ	/e Problem Solving by H.	Scott Fog	ler and	d Stev	en E. L	LeBlanc,	Prentice Hall,	Inc. 199	5			
<u> </u>					Course Topic	s [Suppo	orted (CLO's][Supp	orted P	0's]					
T1:Basis of th	nermodyn:	amics a	ind elec	tro chemistry[1][a, e	2, l]											
T2:ED[2, 5, 7	7, 8, 9, 10,	, 11, 12][a, c, d	l, e, h, i, j, o]												
T3:RO[3, 4, 5	5, 6, 8, 9,	10, 11,	12][a, ł	o, c, d, e, g, h, i, j, l,	m, o]											
T4:Auxiliary	systems o	of RO pl	lants[9,	, 11][a, c, e, h, j, o]												
Supp.Proç	jram Ou	utcom	es (A	ve.Rel:Repititior	n): a(1.3:6), b(1.0:1), c(2.4)	0:3), d(2.0:2	2), e(1.	4:5), g((1.0:1),	h(2.0:3), i	i(2.0:2), j(2.0:2),	l(2.0:2),	m(3.0:1), o(1.7:3)		
Performa	ance Tar	rget fc	or Cou	urse Learning	Contributi	on of cou	rse:			Class/Laboratory S			chedule:	Class:	Lab:	
(Objectiv	ves As	sess	ment:	Math & Basic Sciences:	0	%	0.0	hrs.	Number	r of Sessions p	per wee	k:	3	1	
At leas	st score:		No. c	of students, %:	Engineering Sciences:	0	%	0.0	hrs.	Duration	n of each ses	sion, mi	n.:	50	110	
Direct, %	InDirect	t(1-5)	Dire	ct InDirect	Engineering Design:	100	%	4.0	hrs.	Instr	uctor name:		Di	r. Nedim Turkmen		

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	14	/06/2008
	COURSE SYLLABUS (Course Learning Objectives) MEP499_01_Fall_2007 Pag											
CLO_1	Ability to apply basis of thermodynamics and electrochemistry											
CLO_2	Ability to define membrane: Type, structure, prperties, charcterization, techniques of the preperation											
CLO_3	Ability to understand how membrane is prepared, how performance can be improved: type of material (AC, DAC, TAC), composition (polymer, solvent, additive organic) and applied treatment											
CLO_4	abilty to apply modelling approach of concentarion polarization: Film theory model, conservation equalton (mass and momentum.											
CLO_5	Abilty to ensure updating technology: Development of new generation of membrane (minerals, organics, hybrid material) and mebrane process (EO, MD, SLM)											
CLO_6	Abilty to def	fine the RO	desalinatior	system and design RO unit b	ased o	on ope	ration	paran	neters.			
CLO_7	Abilty to dea	scribe ED de	esalination p	processes and design ED unit	based	on op	eratin	g para	meters			
CLO_8	Abilty to sel	lect ED or R	O module b	ased on their performances ar	nd des	ign						
CLO_9	Abilty to app	ply requirem	nent pretreat	ment to RO and ED vs. feed w	vater c	uality						
CLO_10	Capabilty to	o determine	the field of e	each memebrane process: RO	, UF, I	ΜF, N	F, ED,	MD				
CLO_11	Aptitude to	apply energ	y balance ir	RO and ED								
CLO_12	Abilty to une	derstand an	alogy betwe	en mass and heat transfer								

COURSE SYLLABUS												MEP499_01_Fall_2007		Page - 1	
Code:	MEP49	9 N	lame:	Senior Proj	ject								Туре:	Require	ed
Number of	f Credit:		4	Section:	01 5	Semester:			F	Fall Year:		07	Number of s	students:	13
Course Catalog Description	Selection of topic; literature review; project design planning arranging for data collection and experimental work, Interim report. Experimental work and data collection or field study (if any), data processing. Analysis and results. Preparation of the first draft of final report. Presentation of the project, Final report. Catalog Description														
Prerequisi	ite: S	Studen	ts mus	st complete total	of 120 credit hours cours	es.									
0	A	uthor	' s: K	aragozoglu, Bał	naddin		Nam	e:	Guide	elines For W	riting XE49	9 Seni	or Project Re	ports	
U	Р	ublish	er: C	ollege Copysho	p Edition:	1st	Place	e:		0	Year:	20	03 ISBN :	()
Other Required A. Strategies for Creative Problem Solving by H. Scott Fogler and Steven E. LeBlanc, Prentice Hall, Inc. 1995 Materials: Other Required															
T1:Problem I	Definition	1. 2. 3.	4][a. c.	e. i. i. l. m. n. ol					lloabt		1				
T2:Idea Gene	eration[5.6	5. 7][c. 0	e. i. ol												
T3:Deciding	Course of	Action	[8][c, o]]											
T4:Implemen	tation[9, 1	[0][a, b,	, c, e, f,	h, i, j, k, o]											
T5:Evaluation	n[9, 10, 11	l, 12][a,	, b, c, d	, e, f, g, h, i, j, k, o]											
Supp.Prog	gram Ou	Itcome	es (Av	ve.Rel:Repitition	a (3.0:3), b(3.0:1), c(3.0:4)	9), d(3.0:1),	e(3.0:4),	f(3.0:1)	, g(3.0:1	1), h(3.0:2), i(3.	0:2), j(3.0:4), k	(3.0:2),	I(3.0:1), m(3.0:1)	, n(3.0:1), o(3.0:8)	
Performa	ance Tar	rget fo	or Cou	rse Learning	Contributi	rse:			Class/Laboratory		tory S	chedule:	Class:	Lab:	
Objectives Assessment:				nent:	Math & Basic Sciences:	0	%	0.0	hrs.	Number of	Sessions pe	r weel	k:	3	1
At leas	st score:		No. o	f students, %:	Engineering Sciences:	0	%	0.0	hrs.	Duration of	each sessi	on, mi	n.:	50	110
Direct, %	0		Direc	ct InDirect	Engineering Design:	100	%	4.0	hrs.	Instructo	or name:		Dr. N	ledim Turkmen	

60	3	100	100	General Education:	0	%	0.0	hrs.	Date of prepa	aration:	14/06/2008	
	COURSE SYLLABUS (Course Learning Objectives)											Page - 2
CLO_1	1 Analyze a project statement, brief, or proposal to identify the real problem and the most relevant needs and operational constraints											
CLO_2	2 Identify potential costumers, their needs, and their operational constraints											
CLO_3	2.3 Collect and review related data such as technical information, regulations, standards, and operational experiences from credible literature resources											
CLO_4	4 Integrate previous knowledge from mathematics, basic sciences, engineering fundamentals and discipline related courses to address the problem											
CLO_5	5 Discuss all applicable realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability											
CLO_6	Define design objectives, design constraints, measures of design viability, and the evaluation criteria of the final project, and reformulate the problem based on collected data											
CLO_7	Generate p	ossible solu	tions; comp	are alternatives, and select on	e alter	native	base	d on e	valuation criteria and feasibility	/ analysis		
CLO_8	Plan an effective design strategy and a project work plan, using standard project planning techniques, to ensure project completion on time and within budget											
CLO_9	Implement	a planned d	esign strate	gy for an Experimental Design	Proje	ct, if a	pplica	ole				
CLO_10	Implement	a planned d	esign strate	gy for a Product-Based Desigr	n Proje	ct, if a	applica	ble				
CLO_11	Demonstrat	te ability to a	achieve proj	ect objectives while acting as a	an effe	ctive	memb	er of a	multidisciplinary team			
CLO_12	Communica understand	ate design d ing and imp	etails and e act	xpress thoughts clearly and co	ncisel	y, bot	h orall	/ and i	n writing, using necessary sup	porting material, to achi	eve de	esired